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VORTEX METHODS FOR SEPARATED FLOWS

By PHILIPPE R. SPALART'

Summary

The numerical solution of the Euler or Navier-Stokes
methods” is discussed. The m
ion and includes the
smooth solutions of

equations by Lagrangian “vortex
athematical background is presented in an elementary fash-
relationship with traditional point-vortex studies, the convergence to

the Buler equations, and the essentjal differences between two- and
three-dimensional cases. The difficulties in extendin

ihle flows are explained.
The overlap with the excelle

g the method to viscous or compress-

nt review articles available is kept to a minimum and more
emphasis is placed on the author’s area of expertise, namely two-ditensional flows around
blufl bodies. When solid walls are present, complete maihematical results are not available
and one must adopt a more heuristic attitude. The imposition of inviscid and viscous
boundary conditions without conformal Imappings or image vortices and the creation of
vorticity along solid walls are examined in detail. Methods for boundary-layer treatment
and the question of the Kutta condition are discussed.

Practical aspects and tips helpful in creating a method that really works are explained.
The topics include the robustne

*ss of the method and the assessment of accuracy, vortex-
core profiies, time-n

arching schemes, numerical dissipation, and efficient programming.
Operation counts for unbounded and periodic flows are given, and two algorithmns designed
to speed up the caleulations are described.

Calculations of flows past streamlined or bluff bodies are used as examples when appro-
priate. These include curved mixing layers, the starting vortex and the dynamic stall of an

airfoil, rotating stall 1 a two-dimensional cascade, a multi-element airfoil, and an attempt
at predicting the drag crisis of a cirenlar cylinder.

I' NASA Ames Research Center
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1. Introduction

Vortex methods in general were thoroughly reviewed by Leonard (1980, 1985), and it
would be difficult to improve on these articles. In the present notes we iniend to cover the
hasics of vortex methods and then to discuss in more depth two subjects: the interaction
with solid walls, aud the practical aspects of programming and usiag vortex methods.
These subjects were of less interest to Leonard, but are crucial in engineering applications.
Therefore we attempt to present useful and sometimes onginal material in these areas.
We shall also mention some recent contributions, published after Leonard’s articles. The
sections which contain advanced material and could be omitted for a first reading are
indicated by stars®.

1.1. Ezample: flow past a multi-element airfoil

We propose to start by showing a calculation of a separated flow via the vortex method to
illustrate its main features and, we hope, render it attractive to the reader. We shall often
describe the method by comparison with grid-based (finite-difference or finite-element)
methods, since these are more widespread.

In 1986 the Bocing Commercial Airplane Company contacted ihe author, asking for
computations of the flow past an airfoil in landing configuration, with a leading-edge slat
and a donble-slotted trailing-edge flap. Boeing was especially interested in the variation
of the Iift with Reynolds number. The configuration was a severe test for numerical meth-
ods due to the complex wultiply-connected shape and the importance of viscous effects,
mcluding separation.

Results were obtained in less than a week. In spite of the many concave and convex
sharp corners present, no smoothing or other alteration of the shape was necessary. This
illustrates the first advantage of the vortex method: it is grid-free. With a finite-element or
especially a finite-difference method the grid generation for such a shape would be difficult
and time consuming, and one may have to settle for rather distorted grids which degrade
the aceuracy. With the vortex method the only precaution taken was to make the spacing
between vortices and the time step small enough to accomodate the narrow gaps between
clements 2 and 3, and 3 and 4 of the airfoil.

Figure 1 shows the airfoil, the vortices (more accurately, the centers of the vortex blobs),
streamlines, and the individual (hollow arrowheads) and overall (filled arrowhead) force
vectors at a given time, Observe the recirculating bubble behind the slat, the acceleration
of the fluid through the slots, the separation at sharp corners and on the top surface
of element 4, and the irregular motion in the wake. The computed forces were in good
agreesnent with experiment. The figure illustrates the Lagrangian character of the method:
the solution procedure consists in tracking vortices which move with the fluid, rather than
updating quantities at fixed grid points. It also illustrates the second advantage of the
method: the vortices carry all the information and are needed only in a narrow region
near the body and in the wake. In fact the calculation used just 1300 vortices (roughly
the equivalent of a single 36 - 36 grid). The streamlines were computed only for display
purposes; for the purpose of advaucing the equations in time, computing the forces etc.,
one only needs to compute the velocity of the vortices themselves.

Additional advantages of the method are first that the boundaries of the computed
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Figure 1. Flow past a multi-clement airfoil. - .. vortices; | forces; — streamlines

domain are at infinity which removes all of the probleins associated with computationsin a
truncated domain (the effects of the boundary conditions on accuracy and on stability) and
second that there is low numerical dispersion. The method can transport flow structures
(Broups of vortices) at any velocity without deforming them or dissipating them as a grid-
based method may do. There is no CFL number. The question of time accuracy will be
addressed in much more detail later.

Among the disadvantages are the fact that the flow had to be treated as mcompressible,
although fairly hixh local Mach numbers inay be reached in the slots even at the landing
speed. The calcuiation also required the storage of a 249 x 249 full matrix and about
5 10" floating-point operations to establish the flow, starting from rest, and generate a
time sample long enough for averaging. Both figures are much larger than what a 36 x 36
grid calculation would require. Thus. a vortex carries much more imformation than a grid
point, but it is also much more expensive to maintain. This is because all .he vortices
imteract, so that the operation count is of order N4, where N is the number of vortices.
The competing methods often have operation counts of order N or N log(N).

To auswer Boeing's question, a Reynolds number dependence was indeed predicted. As
the chord Reynolds number was changed from 2.3 x 10° to 1.2 x 107 with all the other
parameters (physical and nunierical) exactly the same, the lift coefficient at 8° incidence
increased by about 5%, This was caused by i difference in the boundary-layer behavior
on the upper surface of element 4. At the lower Reynolds number, the boundary layer
always separated, whereas at the higher Reynolds number it could transition and renain
attached part of the time, thus increasing the circulation around element 4 and therefore
the overall lift. This Reynolds-number trend was consistent with the common wisdom.
Ironically. Beeing subsequently informed the author that experiments had predicted an
opposite trend for this conliguration, so that the situation was rather confused. This
study demonstrates the power of a well-designed vortex method in dealing with complex

,,T\’ Vortex Mcthods 5
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geometries, and how challenging and unpredictable Reynolds-number effects can be to
numericians, experimentalists and designers.

1.2, Governing equations

Complete discussions of these equations can be found in textbooks, e.g., Batchelor
(1967). The fundamental equations are the incompressible Navier-Stokes equations,

V.U=0 (1a)
U, +U.VU == -Vp 4 »V2U. (1b)

Here U is the velocity vector, V' is the gradient operator, t is the time, p is the kinematic
pressure, and 1 is the kinematic viscosity. Bold-face letters like U denote vector quantities,
and the symbol = indicates a definiiion. Equation (1a) is the continuity equation and (1b)
the momentum equation. One obtains the Euler equations by setting v = 0. The vorticity
w is the curl of the velocity,

w=V«xU. (2)

In an unbounded domain with the fluid at rest in the far field, one has the “Biot-Savart

law”, which is the inverse of (2) by a Green’s-function approach (when (1a) holds) and
explicitly gives the velocity in terms of the vorticity:

Ux) = / W) X (x - x) 3)

47 [x - x'|3

This equation only expresses the kinematics of the flow. The integral, taken over the whole
two- or three-dimensional domain, is responsible for the nonlocal interactions between
vortices. By taking the curl of (1b) one gets the vorticity equation,

wi 4 UVw = w.VU 4 V0. (4)

Notice that the pressure term is eliminated, but that a new term, w.VU, appears which is
responsible for vorticity st ret«"hing and rotation. In this term, VU can be replaced by its
symmetric part (VU  YUT)/2 (the deformation tensor), which may be advantageous in
some numerical methods (Cantaloube & Huberson 1984).

The circulation of a velocity field U along a closed contour is defined by the line integral

r:fum. (5)

This is an extremely useful concept because Kelvin's theorem (Batchelor 1967, p. 273)
shows tha. in the absence of viscosity, the circulation around a contour that follows the
flnid is conserved: DI'/Dt - 0.

In two dimensions the equations are much simpler. If the flow is in the (r,y) plane the
vorticity only has a component in the : direction, w, = Jv/0r — Ou /8y (which we’ll denote
simply by w). The Biot-Savart law becomes

U < e [XT ) (6)

2m |x --5("15
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with e, the unit vector in the 2 direction. The vorticity equation (4) becomes

wi+ U.Vw - Vi, (7)

Note that the rotation/stretching term has disappeared. One can define a scalar stream
function ¢ by U = e. Vi since U is divergence-free. Then Y satisfies a Poisson equation,
Vg = w, and the Biot-Savart law is written

P(x) = 517; w(x")log(|x — x'}) dx'. (8)

1.3, Invariants of the motion

One important source of confidence jn a numeri

some of the appropriate integral quantities. In the present context, the most useful form
of these invariants is in terms of {he vorticity, rather than the velocity. See the discussions
by Batchelor (1967, p. 917), Wu & Sankar (1980) or Ting (1983
on integrations by parts but are subtle,
al large distances even when the

cal method is its conservation of at least

); the arguments rely
because the velocity decays slowly (algebraically)

vorticity decays fast (exponentially) which is the usual
situation. In three dimiensions the important. integrals are

/w dx, (9)
/x X w dx, (10)
/xx(x < w) dx, (11)

/“"(’f_;)'“ﬂ(,’j’) dx dx'. (12)
. XX

They correspond 1o total vorticity, line
cnergy, respectively. We assune that h
these infegrals to be defined. Note that
very slowly, hecause if it decays any fast
is identically zero (use Vo - 0}

ar momentum, angular momentum, and kinetic
e vorticity decays fast enough in the far field for

the total vorticity (9) is trivial unless w decays
er than r7*, one can easily show that this integral
Iu two dimensions the corresponding quantities are

/ﬂ dx, (13)

(14)
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Here, the total vorticity (13) has no reason to be zero.

In unbounded inviscid flows, all these quantities are conserved. In unbounded viscous
flows, only total vorticity and linear momentum (9, 10, 13, 14) are conserved. Formulas
giving the rate of viscous decay of angular momentum and kinetic energy can be found
(e.g., Ting 1983). When there is a solid body in the fluid it can alter any of the integrals
(9-16). However, the variation of (9) and (13) (with the integrals restricted to the fluid
region) is known ouce the motion of the body is (Wu & Sankar 1980).

The invariants are often invoked when constructing or evaluating methods, but the
actual importance cf exactly conserving quantities such as (9-16) in a numerical method
1s a matter of debate. The invariants are integrals over the whole domain, and contain 1 >
information about the details of the solution. Many successful methods violate some of
the invariants, especially once time-integration errors are included, and one can construct
methods that conserve the invariants bui are not very good or even are inconsistent. The
common argument that energy conservation prevents the calculation from “blowing up” is
rather technical, and in any case does not directly apply to vortex methods.

The following intuitive argument seems more relevant. The conservation of an invariant
means that over the whole domain the local errors exactly cancel each other in some
measure (¢.g., |x?[dx for (15)). From a statistical point of view, it is then reasonabie to
expect that over an intermediate domain, large enough to contain many vortices or grid
points, the local errors tend to cancel each other instead of accumulating. One then expects
much better accuracy on intermediate scales than on small scales. This is probably true
in many vortex calculations, especially complex ones such as in Fig. 1. One can tolerate
significant errors in the irregular smali-scale motion, as long as they do not affect the
quantitics of interest such as the forces and moments on the bodies.

1.4. Constrainis on vector fields*

Vortex methods and related mnethods focus on derivatives {or combinations of deriva-
tives) of the primary variabies. Using a collection of computational elements (e.g., vortices)
one can represent an arbitrary vector field. This can become 1 liability, because many of
the vector fields involved are nof arbitrary; they satisfy corstraints. For instance, if the
vector A is the gradient of a scalar, say A = V@, then V < A = 0. Now if one represents
the compouents of A separately with two collectivns oI computational elements there will
in general be an inconsistency because 0.4, /8y may not be equal to 0A,/0z, and if they do
differ there is no scalar ¢ such that ¢/dr = 4, and 8¢ /0y = A,. For instance Anderson
(1985a) proposed a Lagrangian method for the transport of a gradient and avoided this
question by solving a Poisson equation for ¢: V¥¢ = 0A4,./8z + 8A, /By, instead of the
original equations. For the vorticity, the constraint is that it should be divergence-free:
V.w = 0. As we shall sec tids also caused problems, and again some methods had recourse
to a Poisson equation (VU = -V x w).

A more direct response to the question of the constraints is to “build them” into the
discretization. For instance the Contour Dynamics method (Zabusky, Hughes & Roberts
1979) can be regarded as based on computational elements that “carry” Vw, the gradient
of the 2D (scalar) vorticity, but the elements are automatically arranged on chains so that
the vector field that purports to be Vw is indeed curl-free. The equivalent for the vorticity

EESCI R e
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Vortex Methods 9

is the filament method, in three dimensions. Such “chained” methods are inconvenient in
terms of bookkeeping (note how the Contour Dynamics method was never applied to more
than a few chains), but are more attractive intuitively. This will be discussed again in the
context of the 3D methods.
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2. Point-vortex methods

2.1. Basics

Point-vortex studies have a long history. Interest in them is Justified by the fact that
the dynamics of point vortices provide exact albeit singular solutions of the incompressible
Euler equations in two dimensions. Assuming one can perform the time integration either
analytically or numerically with high accuracy, one can generate nontrivial Euler solutions
with a small computational cost and very little memory.

Consider a collection of N vortices at positions x;, j = 1, N, with circulations [';. The
vorticity distribution is

w(x) = L é(x - x;) (17)

J=

—

where é is the two-dimensional Dirac distribution (4 is infinite at the origin, 0 elsewhere,

and its integral is 1). Thus we have a collection of “spikes” of vorticity. Inserting (17) into
(6) we get a sum:

N
1 c X — Xk
= -— e, Dy ————.
U(x) 5p €2 % 2:1 ——" (18)

As an exercise one can verify that the velocity field given by (18) is divergence-free, is
irrotational except at the points x4, and has a circulation 'y around any contour enclosing
only the k" vortex.

The other ingredient, which expresses the dynamics, is Kelvin's theorem. If we make
each vortex follow the fluid and imagine a small contour around it we get tle result that
the circulation I'; of each vortex is conserved. Therefore:

dr,
T (19)
dx .
_ét! = Ul(x,,1). (20)

The formulation is now complete. The unknowns are x; and I';, 7 = 1, N. The time
evolution is given by (19) and (20), with (18) giving U in (20). Note that (18) is singular
when x, = x; this contribution is simply omitted from the sum. In other words there 1s
no self-induced velocity for the vortex. The circulations are constant, and the only task is
to move the vortices with the fluid.

An early example of point-vortex studies is Rosenhead’s (1931). As an exercise one can
program the equations (using one’s favorite explicit time-integration scheme for now) for
two vortices with various circulations of the same sign or of opposite signs. The vortices
should orbit around their centroid (Tix; + Tuxy) /(T + I';) unléss their circulations are
exacily opposite, in which case the pair moves in a straight line.

Even though (17) looks like a simple linear superposition of sclutions, it is not, because
the vortices interact through (18). This is how the nonlinearity of the Euler equations
enters the vortex equations. Note also that the equations (18,20) can be derived from the
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Hamiltonian H = - Y I';T' log |x; ~ x| /47 with I'jz; and y; as the canonically conjugate
coordinates and momenta (Aref 1983). H corresponds to (16) with the self-energy of each
vortex (which would be infinite) omitted; in that sense it is the “interaction energy”.
Naturally, H is conserved by the dynamical equations.

To be rigorous, the poini-vortex method can only represent very special vorticity distri-
butions, namely superpositions of Dirac distributions as in (17). These Dirac distributions
are singular, and so is the velocity field they induce: it tends to oo like 1/|x — x| as x
approaches x,. Such flows are not realistic in the sense that they have unbounded veloci-
ties, infinite kinetic energy, etc. However, if one considers flows with small but nonsingular
vortices the point-vortex method is still useful as we show below.

Au example of a realistic thin vortex is the “spreading line vortex” which is a classical
exact solution of the 2D Navier-Stokes equations (Batchelor 1967, p. 204). The vorticity
1s given by \

r x|

dmut exp(~ H)’
the vortex being centered at the origin (x; == 0). As the product vt tends to 0, (21)
approaches the Dirac distribution (17). ’he velocity induced by this vorticity is

w(x, ) = (21)

- r L X [' IX]2
U(x,t) = 5 € X ')xlz \1 - exp( - 21_17;)> (22)

As vl tends to G this velocity tends, point by poiut, ¢ the one given by (18). Thus if
the distance between vortices is large compared with their radius (V1) the equations
(18,19, 20) will not be affected. More generally, if we have small patches of vorticity
(not necessarily of the type of (21)) of extent ¢ much smaller than the distance d between
patches the interaction of the vortices through (18) will not be affected. The patches also
have internal dynamics; they deform, and spread if viscosity is present. However it can
be shown that the centroid of the vorticity in the patch is not affected by the internal
dynamics (convective or viscous) (see (14)). Therefore if X; represents the centroid of the
patch, the sell-induced velocity is still exactly zero.

The conclusion is that as the ratio ¢/d tends to zero the motion of the patches tends to
that of point vortices. This was shown rigorously by Marchioro & Pulvirenti (1983) for
short times, and it is reasonable to expect that it holds for all times, except maybe for
some very special initial conditions. For the gravitational law and well-separated planets
the analog is the familiar point-mass approximation. Saffman & Meiron (1986) present a
different argument, showing that point vortices provide a weak solution of the vorticity
equation (7) with v = 0 (althongh according to C'. Greengard & Thomann (1988) this is
controversial, and depends on one’s interpretation of how the Dirac distribution acts on
a singular function such as (18)). Thus the point-vortex method is not strictly limited
to vorticity fields of the type of (17); it is also a good approximation for the motion of
small, well-separated patches of vorticity. This is still too restrictive for most practical
applications. (“snsequently the recent work with point vortices tends to focus on math-
cmatical issues like the Hamiltonian character of the equations, the existence of steady
conligurations, integrable and chaotic motion (Aref 1983), the statistical properties, and
mixing of the flaid surrounding the vortices. A more elaborate model for well-separated
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patches is the “moment model” of Melander, Zabusky & Styczek (1986), which includes
an approximation of the inviscid internal dynamics.

2.2. Difficulties with vorter sheets*

Given sufficient computing power it is natural to usc more and more vortices to obtain a
liner and finer description of a given vorticity distribution, Just like one refines a grid. This
idea was first applied to vortex sheets. Such flows are not as strongly singular as point
vortices: the vorticity is still singular but only like a one-dimensional Dirac distribution,
the velocity is discontinuous but finite. In fact Rosenhead’s work was aimed at a vortex
sheet, but he did the computations by hand and could not use a large number of vortices.
When this became possible, the outcome was a disappointment: smooth sheets could not
be maintained, and the vortices rapidly started moving chaotically (Birkhoff 1962). The
time integration was accurate, and the situation did not improve as more vortices were
used (Moore 1979). Ostensibly, the method was not converging.

The consensus now is that the wrinkling of the sheets discretized with point vortices was
not just a numerical phenomenon, because the vortex-sheet problem is not well posed: in
general the exact solution does not remain smooth even if the initial condition is. This
is so because waves of all scales are unstable, and the shortest waves grow the fastest.
Krasny (1986) and other researchers have shown that a periodic vortex sheet disturbed
by a single sine wave remains smooth for a finite time, and then develops a singularity
(infinite curvature). Krasny explains that if the initial condition is analytic the amplitude
of the short waves is exponentially small, so that even though they grow very fast they
do not contaminate the whole solution until some finite critical time t.. Krasny showed
that the point-vortex method gave a good solution up to time 1., but only if round-off
crrors were reduced to alow enough level. He suggested using higher-precision arithmetic,
and also proposed a filtering technique which is very powerful, but should be used with
exquisite care,

2.3. Application to smooth Euler solutions*

The point-vortex method is not considered a viable numerical method to converge to
smooth solutions of the 2D Euler equations. However, the reason is not that it would fail
in a blatant way, as it seemed to do with vortex sheets. The main reason the point-vortex
method is out of favor is that convergence proofs have been given for vortex-blob methods
(43) and demand that the blobs overlap, and overlap more and more as they become
denser. This is incompatible with point vortices. There is the question of what measure
of the error one is using. If one takes the velocity or vorticity fields, there is no way the
point-vortex solution could converge in any of the familiar norms, e.g., Lo, since it is nc’
even bounded. On the other hand if one ouly cousiders the trajectory of the vortices an:. |
their initial arrangement is regular, they behave well at least for sowie time, which implies

o

that the global measures like the moments of the vorticity and the Hamiltonian (13-16)
behave well too. It may be that the trajectories (and even the velocity field if one takes
! an “exotic” norm like a Sobolev norm with a negative index) converge to the exact ones

at least up to some critical time. This is just a conjecture. i
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3. Vortex-blob methods

3.1. Motivaiion and basics

Initially a strong motivalion to switch from point vortices to nonsingular (or less-
singular) elements than was the failure of the method on vortex sheets (Chorin & Bernard
1973, Kuwahara & Takami 1973). Now, the emphasis is on smooth Euler solutions, for
which the blob methods have been shown to converge, even with high orders of accu-
racy (Hald 1979, Beale & Majda 1982). We present the method in two dimensions. In a
vortex-blob method the Dirac distributions é in (17) are replaced by bounded functions

b
N

w(x) = Y T b,(x - x;). (23)

e

i1
The é, function has an integral of 1, and the length scale ¢ (the “core radius”) is a
measure of the spread of é,. In almost all cases, 8, is radially symmetric and its shape is
independent of @ i.¢.,

bulx - x,) = - (il (24)

ol o

for some nondimensional function f, usually bell-shaped. and satisfying

27r/ rf(r)dr = 1. (25)
Jo

One now has a “realistic” velocity field, bounded and with locally finite kinetic energy.
The function f is small away from the origin, and as @ - 0, the blobs resemble point
vortices. The Gaussian, as in (21), is a possible choice but may not be the most judicious
in terms of computational speed. Equation (18) hecones

N ‘ ‘

. X Xi o o iX Xy s

Ulx) = ar € L‘]kix x4 ]2 a - ) (26)
kool

where F'1s defined by

F(r) - 277/0- ' f(r")dr'. (27)

Figure 2 gives an exaneple of the velocity given by (26, 27), compared with the point-vortex
velocity (I18). They agree except for |r|/a of the order of 1 or less, and the blob-induced
velocity is smooth at the origin. Finally the stream function is given by

I VS e 1Y
fx) LNy (R

a

(2%)

with I7 delined by
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Figure 2. Azimuthal velocity induced by vortices. -— vortex blob; - - - point

vortex

Equation (19) is unchanged; circulation is conserved. In most methods (20) is also
unchanged, i.e., the blob moves with the velocity at its center x;. Leonard (1980) discusses
the use of the velocity averaged over the blob (weighted by é,) instead of the velocity at
the center. In that case, (27) does not hold and the relation between f and F is slightly
more complex; the alteration of the velocity is O(o?). Averaging the velocity is sensible
since the most meaningful interpretation of x_ is as the centroid of a small vortex patch
(§2.1). Leonard also shows that the kinetic energy of the flow (16) is conserved only with
the weighted scheme. On the other hand this energy strongly depends on the function
f, which has little physical meaning, and given a function F one can always define a
Hamiltonian which approximates the kinetic energy, and will be conserved. The weighted
scheme has not received much use.

One could consider using a different core radius o for each vortex; however this is ill-
advised because it prevents the method from conserving even the most basic invariants, e.g.,
the linear momentum (14) (Lecnard 1980). One can of course symmetrize the interaction
by taking an average of o, and oy, which restores the conservation of (14), but this is
arbitrary and seems inconsistent with the concept that the exact value of #; is important. A
much better response to the objection that (14) is not conserved would be to use Leonard’s
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weighted scheme. Still, the consensus is that the calculations are, and shculd be, quite

insensitive to the function f and the value of o. The basic method defined by (19, 20, 26)
with uniform e (independent of j or 1) is by far the most used.

1.2, Convergence in theory

The accuracy and convergence have been discussed by Hald (1979), Leonard (1980), and
Beale & Majda (1982), amoug others. Leonard focused on the consistency of the method
whereas Hald and Beale & Majda obtained complete convergence proofs including stability.
Both approaches produced “moment conditions” which indicate the order of accuracy of
the method according to whether some integrals of the function f equal 0.

Beale & Majda spht the error in the velocity field at some time f into two components,
one due to the inexact position of the vortex centers (compared with the motion of the
points in the exact solution), and the other due to the discretization of the velocity by
(26). The two components naturally interact as t increases. Leonard examined the local
error due to the fact that the whole blob is made to move at the same velocity, whereas in
reality the fluid region that coincides with it is strained. He did not emphasize the error
due to the initial discretization.

The mathentical papers all show that convergence is obtained when N -» o0, h — 0,
and @ -0, but @ not as fast as h (i.c.. a/h - ). This last condition was unexpected
{(Leonard 1980); it means that the vortices nist become closely spaced, but also overlap
more and more for the method to converye. Finpirical tests by Nakamura ef al. (1982) and
Perhnan (1985) fully confirn the need for the inereased overlap. Hald and Beale & Majda
sugpest simiple laws like o Ch? with (7 some constant and the power ¢ less than 1. The
studies by Hald, Leonard and Beale & Majda ali show that the error is proportional to
o power of o, not b For iustance with a Gaussian core function [ the error is of order

The mitialization of the vortices is more involved than one might expect, even in the
stiiple case of an anbounded dojuain. Suppose one has an initial vorticity field wy. One
lays o prid of cells of size b over the domain. One procedure is to place a vortex at the
center of each cell, and to give it the circulation within that cell (the integral of wy over the
celll The vorticity centrond would then be preferable to the geometric center of the celi.
Anotheris to aive it the value of wy at the center, nwltiplied by /4%, The first procedure
bomnore dutuitive and is preferable if oy, is not smooth: the second one is formally more
accurate and is reconunended if one is seeking better than second-order accuracy and wy
i very smooih. A third procedure is to require that the vorticity given by (23) equal
wao cither at the grid points or at a denser set of points with a least-squares algorithm
(Nakawmura of al. [952). This results in a matrix equation for the I')’s. This idea is
attractive, but the inplementation can he awkward, and the matrix is very ill-conditioned
e /0 is large.

S0 Convergence in practice

Convergence has been tested and observed only for unbounded flows (wall-bounded
lows are discussed in §9.6). Many papers contain some nseful information about the
behavior of the method (Nakamura of al. TON2, Beale & Majda 1985), but Perlman's
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1985 study is the most complete. She chose some simple, smooth, radially symmetric
Euler solutions and systematically computed the errors in actual calculations, including
the various comporents introduced by Beale & Majda (1982). She found that for smooth
wo the method did converge, with the expected order of accuracy. For less-smooth w,
the higher-order cores (ones which satisfy more moment conditions) did not provide any
advantage. Values of the power g close to 1 (little overlap of the cores) made the calculation
lose its accuracy in a shorter time. The disorganization of the vortices, compared with
their regular initial arrangement, was largely responsible for the loss of accuracy.

The question of disorganization is very relevant, because in practice the vortices always
look disorganized, see Fig. 1. In all flows of interest, the product of the time and the
velocity gradients (strain rate, vorticity) is large, so that the fluid gets highly distorted.
The advartage of the vortex method over the few grid-based Lagrangian methods that have
been tried is precisely thai it can tolerate this distortion. However, its order of accuracy
scems to drop to lower values. Quite probably, most vortex calculations produce results
that are quantitatively accurate (especially the global quantities, e.g., forces and moments)
but are far out of the range where the theoretical error estimates apply (§1.9, 9.6). This
is at the same time a weakness, and a strength.
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4. Three-dimensional flows~

4.1, Esscutiad differsuees with two-dimensional flows®

There are two diflerences: the constraint on the vorticity to be divergeuce-free is not
trivial, and infinitely thin vortices are not a viable approximation. The constraints were
discussed in §1.4. In three dimensions an arbitrary collection of Dirac functions as in (17),
or of their smoothed counterparts as in (23), does not satisfy V.w - 0 and therefore cannot
represent a vorticity field. This difficulty has been addressed in two ways. One is to chain
the vortex elements together to form filaments or nets, which automatically imposes the
constraint. The other is to ignore the constraint at the level of the discretization and to
rely on the accuracy of the method: as the method converges the constraint is better and
better satisfied, as is the other equation (4). The first approach produced the filament and
segnient methods, while the second produced the “monopole” methods.

The second difference is also a major difficulty. The velocity of a thin vortex filament of
circulation I', radius of curvature R, core radius a, and binormal vector b is approximately
given by

T R
U ~ /irr}{ ]()L(‘” )b, (30)

see Batehelor 1967, po 5230 Thas filaments with curvature have a self-induction, and
moreover it s not well behaved in the it of an infinitely thin fikiment (a/ R+ 0). The
next ternyin the approximation, after (20), strongly depends on the shape of the vorticity
distribution, e a “top hat™ or a Gausstan as in viscous flows (21). This behavior of
the sellindneed veloeity has maosvated a number of studies based on the Local Induction
Approximation (LIA) (Hama 1962). Consider a smooth vortex with circulation T' and
globid lengtn scale L, and assume that a/L - 0. If one integrates from time 0 to T and
the produet 1" Ulog(L/a)/L* is kept coustant the motion of the vortex tends to a finite
Mt as o L -0, given by (30). Observe that (30) depends only on the local characteristics
of the vortex,

The LIA is reminiscent of the 2D point-vortex approximation since it describes the
motion i the it of very thin vortices, but is in fact almost the opposite since the
internal dynamies, which were neghgible in 2D, now control everything. Also, two distinet
filaments do not juteract at all] and different parts of the same filament interact weakly
through the derivatives that enter the definition of the tangent, the binormal, and the
raddius of curvature. The LIA became especially popular when Hasimoto (1972) showed
that it could support solitons. However in practice it is not easy to justify the value of a or
to decide whether a should vary in space or time. The restriction a <<7 L is also unrealistic
i any situation with viseous or turbulent stresses. At this point this approximation has
given excellent results in a few specific cases (Leonard 1985), but it is not regarded as a
numerical method adapted to the solution of practical problems.

_—
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4.2. Filament mcthods®

Filament methods have been introduced and refined by Leonard and his co-workers over
the years (Leonard 1985). Since verticity is naturally arranged on closed lines Leonard
chooses a discretization based on vortex filaments each with a constant circulation I';. The
filaments then induce a velocity field on each other and on themselves, and their motion is
computed. The self-induced velocity requires special care because the Biot-Savart kernel
(3) is strongly singular and many different regularizations have been tried. The method
is in a state of flux, because the regularization that has been used up to now is accurate
for long waves (it agrees with (30)) but is not satisfactcry for short waves on the filament,
often resulting in a spurious instability (Leonard 1985). Recent work by Winckelmans &
Leonard (1987) focuses on a solution to this problem which actually borrows a term from
the LIA and adds it to the usual regularized contribution.

Leonard’s method is by far the most used in 3D (Leonard 1980, 1985, Ashurst 1983,
Ashurst & Meiburg 1985, Nakamura, Leonard & Spalart 1986). See also the closely-
reiated 3D vortex-in-cell method of Couét, Buneman, & Leonard (1981). With proper
care this method can be applied to a variety of vorticity-dominated flows. Some involve
isolated filaments, in which case the core parameters have a strong influence on the solution;
others involve “bundles” of numerical filaments to describe a physical vortex, which makes
the calculation much more expensive but less sensitive to the parameters. A systematic
application to flows past solid bodies, with boundary layers, separation, and so on, still
has to be made.

{.3. Segment methods®

Chorin (1980, 1982) proposed a method in which chains of vortex elements can also be
identified, but they are treated totally separately in terms of the velocity they induce, and
the shiplest and least computationally expensive regularization of the kernel is used (the
velocity is corrected within a sphere centered on the mid-point of the segment). Chorin
does not require a single chain to behave like a physical vortex, and relies on bundles or
clouds of elements to obtain the correct hehavior (e.g., (30)). Compared with filament
imethods this method is somewhat cheaper computationally and offers easier bookkeeping.
In fact, one could generalize the pattern of elements from a bundle of lines to a “net”. One
would keep track of a set of nodes, which get moved in time following the fluid. There
would also be a set of segments, each with a circulation, a starting node and an end node.
Any number of segments could start from, or end on, a single node provided thai their
circulations (taken with the appropriate sign) add up to zero. With such a method it
would be nuch easier to merge nodes to control their number if needed (§9.3).

Chorin (1982) used his method to compute the evolution of a disturbed vortex in a
periodic box, with emphasis on the question of singularities in the 3D Fuler equations
and the fractal character of the support of vorticity in turbulent flow. He also studied
boundary-layer traunsition (Chorin 1980).

4.4. Monopole methods®

A number of three-dimensional 1. . thods have been proposed in which the computational
clements are totally disconnected instead of heing arranged in filaments or nets (Rehbach
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1977, Saffman 1980, Beale & Majda 1982, Novikov 1983, C. Greengard 1984, Cantaloube
& Huberson 1984, Anderson & (. Greengard 1985, Mosher 1985). The elements are
sometimes called “vortex monopoles™ or “vortons”. In such methods the rotation and
stretching of vorticity by the w.VU term is explicitly computed instead of being a by-
product of the relative motion of the points that describe the filament. The methods differ
primarily in the way this term is computed.

Fhe attractive features of such methods are: simplicity and computational convenience,
possibly casier mathematical analysis, and the freedom for the elements to rcarrange them-
selves so that the topology of the vortex lines changes (the “reconnection process”). The
objection was raised carly on (by the author and certainly by mnany others) that in such a
method the vorticity field carried by the computational elements may not be divergence-
free, which is unnatural.

Suppose one has a set of elements which carry vorticity in three-dimensional space. Call
wa the vector field formed by adding the vorticity of all the elements, as in (17) or (23) but
with vector values. The subscript “a” stands for “apparent”, as will become clear. The
procedure is to apply the Biot-Savart law (3) to w, to obtain the velocity field U. Let us
define the “true” vorticity field w, by w, = V x U. Clearly the divergence of w, is 0, since
it is the curl of some vector field. If the divergence of the apparent vorticity is nonzero,
Hocannot be equal to the true vorticity: w, # w,. More precisely, w, is the projection of
wa onto the space of divergence-free vector fields (this is so because the Biot-Savart law
actually solves the Porsson eonation VU V x wq, so that the only link between w,
and w is that they have the same curl).

Graphically, what this means is that when the “vortex lines” of w, terminate within
the domain (i.e., V.w, £ 0) the vortex lines of w, correct this by connecting to another
clement, or the opposite end of the same element, in as smooth a fashion as possible.
Thus the small region in whicl w, 7 0 is surrounded by a mwuch larger “halo” in which
wy /00 This is disturbiog, because one applies the vorticity tra.sport equation (including
the vortex-stretching and rotation terin, etc.) to w,, noi to wy. Thus if there is rotation
locally where w, is located, the whole halo of w, rotates too, which i just not correct.

It the visualization of a monopole caleulation shows that the elements are scrambled
and some of the vortex lines of w, terminte within the domain, then w, and w; must be
strongly different, the caleulation is unreliable, and it should be terminated. Monopole
methods are unlikely to be “robust™ in the sense of allowing safe iptegration to large times.
Rehbach (1977) reports serious problems far downstrean. of his wing and had to artificially
reduce the strength of the vortex elements in that region to obtain a stable solution.

Saflinan & Meiron™s (1986) study is quite critical of vorton methods. They showed that,
i generalsasysten of vortons is not a weak solution of (4) and does not even conserve
the integrated vorticity or momentuin, given by (9) and (10) (see also Leonard 1985);
they also comment on the central role of the nonzero divergence of we. Nonconservation of
integrated vorticity is not too serious, because it is the integral of w, which is not conserved
(we ilways iutegrates to U, =asuming fast enough decay at large distances). On the other
hand, nonconservation of mowentum is a serious flaw (§1.3).

The most popular application of wonopole methods has been to tie reconnection pro-
cess (C. Greengard 1984, Mosher 19585), which filament methods are unable to model
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without outside intervention. Rehbach (1977) also studied the flow past sharp-edged
three-dimensional wings, and Cantaloube & Huberson (1984) studied propellers and ro-
tors. Only Greengard had a mathematical convergence proof for his method and attempted
(with some degree of success) to demonstrate the convergence in actual calculations. The

three-dimensional problem is probably the most open and challenging in the field of vortex
methods.
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5. Extension to viscous and corapressible flows

5.1. Viscous flows

The original Navier-Stokes equations express local interactions between neighboring
points, through the spatial derivatives. In contrast, vortices interact at any distance
through the Biot-Savart law and do not recognize their neighbors. The unfortunate con-
sequence is that while we were able to formulate one set of equations, the Euler equations,
very clegantly the necessary spatial derivatives are not available to add any other terms,
for instance the viscous terms, in a straightforward manner. One needs to alter (19), (20),
or (23).

One obvious idea is to use the exact viscous solution {21) to make vortex blobs, at least
in 2D. The blobs then spread in time like v//f. Equations (19) and (20) are retained. This
method is attractive, but inconsistent. In a vortex-blob method, to obtain convergence
of the transport process one needs to lei the core size o tend to 0 (see §8.2). If o is
made proportional to /v, the user can’t control it any more, and the core-deformation
error cannot be made to vanish. Thus the method “mimics” viscosity, but damages the
mviscid process. C. Greengard (1985) actually proved that the niethod solves “the wrong
cquation”: the vorticity is “correctly diffused, but incorrectly convected, even in the limit
of infinitely many vortices™.

The most used treatment of viscosity is the random-walk algorithm (Chorin 1973).
Chorin adds a random component of appropriate magnitude (proportional to VvAt) to
the position of each vortex at each time step. In the average, with a large number of
vortices, this introduces the desired diffusion. When solid bodies are present there is also
a creation of new vortices along the wall at each step to account for the flux of vorticity
out of the wall. This approach is very simple, consistent, and partial proofs of convergence
are starting to appear (Hald 1984, Goodman 1987). On the other hand it seems ineflicient
to carefully track a vortex if 1t contains only such a small amount of information (since
it takes many vortices for the Jaws of statisties to turn the random walk process into a
meaningful macroscopie diffusion). Milinazzo & Saffman (1977) created a controversy by
testing the method and showing very slow convergence to a simple exact solution; the error
was of the order of N V2 with N the number of vortices. There are some questions about
which measure of the error is most meaningful with the random vortex method, but the
consensus seems Lo be that slow convergence is observed notably near boundaries (Chorin
1980), and the Q(N /%) estimate was confirmed by Roberts (1985).

Probably the most convincing application with random walk was the study by Ghoniem
& Gagnon (1987)  They succeeded in simulating the flow over a backward-facing step
i the laminar range, up to Reynolds number 229, using about 1000 vortices. In this
flow viscous stresses control the flow even away from the wall, so the agreement with
experinients and other calculations 1s very encouraging. On the other hand, in the author’s
estimation results of the same quality could be obtained with a grid-based method with
much less computational expense, and the competitiveness of the random-walk miethod in
terins of computational speed is not excellent. This led the present author to choose a less
ambitious approach, wherein the viscous effects are totally neglected away from the wall,
and are included only in a relatively erude manner in the boundary layers. This approach is
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clearly not universal, but with careful implementation and high enough Reynolds numbers
it has been justified by the results obtained on a number of cases.

Two other possibilities for a viscous method should be mentioned. One could be called
the “exploding vortex” method: at each step each vortex would be split into a few vortices
with a spread again proportional to VvAf. This method leads to a rapid proiiferation
of vortices, and therefore is extremely expensive and impractical. Finally, there is the
idea of transferring circulation between blobs at each time siep in an appropriate manner
to represent the diffusion (G. Winckelmans, personal communication 1987, after work
by Cottet and Raviart’s group in France). Thus, (19) is modified. There is no core
spreading, so the convergence of the inviscid part of the dynamics is not jeopardized.
Circulation is conserved, but the vorticity centroid apparently is not (one could modify (20)
to compensate). The method needs to have some “dormant” vortices with zero circulation
In any region that may become vortical at later times, and the vortices must be closely
packed, only a distance of order /v A1 apart. In grid-based methods the spacing between
points is typically of the order of Vo7 (where T is a global time scale), which is much
larger than Vi Aft.

The profusion of candidates for the viscous treatment (we even omitted a few that
showed very little promise) reflects the intense need for such an addition, as well as the
lack of a truly satisfactory solution to this date.

5.2, Compressible flows*

Most flows of interest are at least slightly compressible, and the capability to treat such
flows with a vortex method would be very valuable. Furthermore one of the key ingredients
of the method, Kelvin’s theorem of conservation of circulation, still applies to barotropic
compressible flows. Shocks and other sources of vorticity invalidate the theorem: this
creation of vorticity could in principle be computed, but this has not been attempted yet.
Let ns restrict the discussion to shock-free flows. Then (19) and (20} apply.

The equation that does not apply any more is (18). The velocity now also depends on
the dilatation rate (u, + vy), which is nonzero. One possible approach is to include this
quantity in the description, and have a numnber of sources jn the flow just like there are
vortices. The obstacle here is that the evolution equation for t}. - dilatation rate is far from
being as simple as that for vorticity. Furthermore the dilatation rate, unlike the vorticity,
1s not normally confined to a small region. Thus one of the main advantages ¢ the vortex
method is lost. These two obstacles seem to have prevented any sustained attempt using
this approach. The author is only aware of some work along these lines by Professor J. (.
Wau, using a finite-difference method (personal communication, 1983).

Another approach is to consider flows at low Mach numbers and to approximate the
dilatation rate. One would then obtain an expansion in terms of the Mach number, similar
to the well-known and successful Prandtl-Glauert approximation. This was attempted
by Deflfenbaugh & Shivananda (1980). They obtained a Poisson equation for the first
correction, of the order the Mach number squared, and used a finite-difference method
to solve it. I is not clear to the author that the procedure was consistent, because time
derivatives were found both on the left- and right-hand side of the equations. Indeed the
numerical solutions were unstable in time, and Deflenbaugh & Shivananda had to delete
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some of the time-dependent terms to obtain bounded solutions. They conjectured that a
more accurate scheme would alleviate the problem. To our knowledge, this approach has
not been followed upon.

For future work, it seems that the objections to the first approach are deeper than those
to the second one. One should be able to formulate a correction at low Mach number.
However it is not clear that this can be done without the use of spatial derivatives as in a
Poisson equation; these can be handied on a grid, but losing the grid-free character of the
method is a heavy price to pay. The best by far would be to find a grid-free strategy for
the compressibility correction.
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6. Inviscid boundaries

6.1. Use of boundary elements

The traditional way of implementing the inviscid boundary condition (i.e., zero normal
velocity 2t a surface) is by using image vortices. However this is possible only when the
shape of the surface is very simple (e.g., straight line or circle) or when nne has an analytical
conformal mapping from the desired shape to one of the simple shapes. This has led to
numerous studies of the flow past circles, ellipses, and Jonukovsky airfoils, for instance.
Another sericus drawback of images in practice is that a vortex close to the wall is also
close to its own image. A strong interaction can develop, with the vortex and the image
forming a pair aud traveling along the wall at a high velocity and in the direction opposite
to that of the boundary layer.

In practice the inethod of boundary elements, in which vortices, sources, or doublets of
appiopriate strength are placed along the boundary to ensure that the boundary condition
is satisfied, is much more flexible. In other contexts it is called the panel method. At the
expense of solving a linear system, one can treat arbitrary shapes. The matrix of the linear
system is unfortunately full, but in a time-dependent computation it needs to be inverted
only once so that the cost at each step is of order M? and not M3 (M being the number
of boundary elements).

When the boundary-element method is used as part of a vortex algorithm, as opposed
to a potential-flow solver, it is convenient to use vortices for the boundary elements (Lzwis
'981). Furthermiore in some cases using vortices is much more natural (for instance the
splitter plate for a mixing layer carries a velocity jump and therefore circulation). Let us
restrict our attention to two dimensions for now. Let the points %;,1 < j < M, describe the
boundary. The hound vortices are placed at these points. One could construct an algorithm
to cancel the normal velocity at or near the points X; (for instance at (X; + Xj41)/2).
However, there are large locai velocities and depending on the exact choice of the test
point and other parameters there is a danger of having fluid “leak” through the boundary
in the average. It is much preferable to use the stream function: the condition is then
w(X, 1) = (X,). Thus we are imposing zero mass flux between X; and X;4;. This
method 1s more robust, and also more convenient when one has several surfaces (e.g., the
walls of a wind-tunnel) and wishes to impose the mass flux between them: the condition
becomes $(X;41) = $(X;) Q if X, is on one wall, X,41 is on the other and @ is the
mass flux. The stream-function method results in a matrix which is well structured; the
Jargest elements are on the main diagonal and the one just below it, and Gauss elimination
without pivoting is sufficient to solve the system.

Typically the stream function results from the linear combination of three components.
If there is flow at infinity this corresponds to a stream function Poo(X) = (x x Ug).e,
where U is the uniform freestream velocity. Note that a slight generalization is possible
in 2Dz if the freestream flow has uniform vorticity the vortex method can still be applied
to the deviation from the freestream vorticity (i.c., Eq. (7) still holds, but (4) does not
in 3D). Then there is the stream function associated with the free vortices, s, which is
given by (28). The initialization or generation of these vortices strongly depends on the
problem at hand. Finally there is the stream function of the bound vortices, ¥, which is
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given by (28" too. Thus the equations are
PR 1) = Po(X;) = Yool X)) = Poa(Xjs1) + (X)) = (Xjpa) — ). (31)

The unknowns are the circulations I'; of the M bound vortices. After they have been
computed, the velocity of the free vortices is computed and they are advanced for one time
step according to (20). The displacement of the free vortices (and possibly the creation of
new ones) alters 317, so that (31) has to be solved again for the next step.

The question arises immediately that (31) can be written only for j < M; there are
only M -1 equations, for the M unknowns I';. This is the well-known paradox: the total
circulation is undetermined. The solution is to add an M equation that prescribes the
sum of the circulations. Thus all the elements of the last row of the matrix are 1. Typically,
one forces the total circulation in the plane to be zero, so that the M™ equation is:

M N
Yori=-)T (32)
=1

1=1

(recall that N is the number of free vortices). However this condition is not unique;
sometimes symmetry or other considerations are applied instead. See the discussion of
(38) in §7.2.

For the extension to three dimensions, one will not have a stream function. One can of
course revert to a condition on the normal velocity itself, but imposing the condition in an
integral sense as in (21) is preferable. Suppose one has cells on the surface (e.g., triangles);
the border of each ccll defines a contour. One could use a vector potential and require
that its circulation around each contour is zero. This is equivalent to requiring that the
Mnx of the velocity field through each cell is zero. Since mass conservation is built into
the discretization, it seems consistent to use for the boundary an algorithm that exactly
CONServes 1niass.,

An application of the vortex method with inviscid boundaries is given in §6.5. Other
applications are nozzles or wind tunnels. Spalart (1984) assessed tunnel blockage effects
by imposing the inviscid condition on the tunnel walls (on which separation did not occur)
and viscons conditions on the body. One can also represent a lifting surface as an inviscid
houndary (Katz 1981), but then the circulation in the lower and upper boundary layers
cannot be distinguished, so that one cannot predict viscous effects such as separation; one

also needs to impose the Kutta coudition.

6.2, Kemark on the choice of two numerical paramelers”

In general, there are no explicit equations linking the different length parameters, so
that the user is left with his/her intuition to choose values. However in the simple case
of an inviscid boundary one can use the following simple argument to relate the spacing
hetween the points X, and %;,, and the core radius 0. We idealize the boundary as a
straight line on the » axis with equally distributed points X; at intervals A. Let U/ denote
the velocity jump across the sheet. The ideal stream function s 4 = - 1/1yl/2; the flow is
aniform at t 11/2 above and below the sheet. With the discretization by vortices, the flow
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is nearly uniform away from the sheet by forms the usual “cat’s eyes” around the vortices.
The stream function discretized using vortex blobs with the core function F = r?/(r? 4+ 1)
(see (46)), is given by

o UA N Ix - jAe | + o?
R ] ®

The circulation of each vortex is —U A, and the denominator inside the logarithm represents
an additive constant that was set to ensure that at x = X; = jAez, ;s = 4; = 0 (recall that
the stream function will be sampled at the points X; to write (31)). One can verify that
for large |y| the stream function ¥, given by (33) becomes arbitrarily close to -Ulyl/2+C,
where (7 is a constant. The mass flux between the test point X; and a point far up will
be correct only if C' = 0. This mass flux is an imporiant quantity when the walls are the
walls of a tunnel or nozzle, especially of variable section. It is less important in external
flows. A numerical summation of the series (33) showed that (! = 0 is obtained when o/A
is equal to 0.153. The optimum value of ¢/A naturally depends on the core profile used
(the F function). In practice, the value 0.153 can rarely be exactly respected since the
spacing of the points is generally uneven, but it is a vsetul guide.

6.3. Example: a curved miring layer

Mixing layers, either temporally- or spatially-developing, have been a frequent subject
for vortex methods (Ashurst 1979, Aref & Siggia 1980, Ashurst & Meiburg 1985). A short,
unpublished study of curved, spatially-developing mixing layers will be described here
primarily as an example of how realistic boundary conditions can be applied. The study
was suggested by Dr. N. Mansour (NASA Ames Research Center) after some experimental
studies showed a strong effect of curvature on the structure of mixing layers (with the faster
stream inside, the layer was much more disorganized and three-dimensional).

Although this was not the only way to proceed (see the treatment of the flat mixing
layer using {wo semi-infinite vortex sheets in Leonard 1980) it was decided to use curved
walls as guides for the flow. Let R be the radius of the mixing layer, R, the radius of
the inner wall and R, that of the outer wall. The values chosen satisfied Ry /R = 0.9 and
Iy/R - 1.1, and the “test section” covered one radian; see Fig. 3. Boundary conditions
were enforced on the two walls, on an inflow houndary and on a section of the splitter plate
using bound vortices. On the walls and plate, the inviscid no-penetration condition was
applied (most mixing-layer simulations do not enforce any condition on the plate; they just
place a row of vortices of equal circulation on it). Along the inflow boundary, the velocity
normal to the boundary (ug) was imposed and equal to the velocity of the irrotational flow
(1.e., proportional to 1/r). This is an example of (31) with Q; # 0. It can be interpreted
as a porous boundary with imposed blowing. The system was closed by requiring that
the circulation of the hound and the free vortices add up to zero, see (32). This value
was arbitrary but ensured that the flow outside the walls was relatively quiescent, so that
the velocity field was smooth at the inflow and outflow boundaries. Provided that the
test section is long enough, the manner in which the linear system is closed (the At
equation) is unimportant, as are the inflow and outflow conditions; here we are invoking

Saint-Venant's principle.
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Figure 3. Computation of curved mixing layers. a) Fast fluid outside, U/; = 2Uy;
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i No condition was needed at the outflow. The trailing edge of the plate gives an example

of a smooth transition from the bound vortices to the free vortices; the two families of
vortices have the same spacing, core size, and essentially the same circulation (this assumes
the proper relationship between the mean velocity, the time step, and the spacing). At
every time step the last bound vortex becomes a free vortex, keeping its circulation. The
vortex that is farthest downstream is deleted. Thus the calculation can be run as long as
desired.

In parallel with the numerical study, the linear stability of curved vortex sheets was
investigated. By generalizing the well-known derivation for flat sheets (Batchelor 1967, p.
511) it was found that the growth rate a for a wave with wavenumber « is given by:

it gl . . 4 ﬁ:“'%o. ‘
- - +

a® = 1’4—(17, ~ ;)% + g(nf - U3) (34)
where 17; is the velocity of the inside stream and U/, is the velocity of the outside stream.
Note that this formula reduces to Batchelor’s result (a = o|l/; — U,|/2) as aR — oo, that
is, as the radius of curvature hecomes much larger than the wavelength.

Equation {34) shows that the mixing layer is more unstable if the inner stream is faster
(I'; > U'}). However the relative difference in growth rates is smallest for the most
unstable waves (largest |«|) so this effect is not significant. Figure 3 shows mixing layers

T

with velocity ratios 17, /17, of 2 and 1/2 respectively, and confirmns that even a significant

IR R )

curvature (compared with the size of the largest eddies) has litile effect on two-dimensiouai
mixing layers. This strongly suggests that the third dimension is necessary to explain the

R

3 eflect observed in experiments.
Another point of interest is that the boundary condition on the splitter plate did not

D &

'[F seem to make a noticeable difference in the flow pattern. There was a possibility that the
; pressure disturbances from downstream would influence the circulation of the new vortex
} that is created at cach step, thus creating a feedback mechanism with the sharp trailing

edge as an amplifier. However, in the caleulations this effect was very weak, and the flow
did not differ noticeably when the boundary condition was enforced using “31) and when

the vortices bound to the plate were given niform circulations.

e
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7. Viscous boundaries

7.1. Application of the Biot-Savart law inside a solid body

In §6 we showed how the inviscid, no-penetration condition can be convenicntly enforced
using boundary elements, preferably vortices. We are now interested in satisfying also the
no-slip condition. A priori this is more difficult, but we have a very fortunate result that
shows that, for external flows, this can still be achieved with a single set of boundary
elements (Wu & Sankar 1980). Thus, calculations with both the no-penetration and no-
slip conditions arc almmost as simple as those with only the former. The key idea is to
extend the velocity field and the stream function into the region occupied by the body.

Consider a solid body occupying the bounded region D, with boundary 8D. It may be
multiply-connected, made up of sub-regions D;. For now we restrict ourselves to a fixed
body and two dimensions. Suppose we obtained a vorticity field such that the stream
function it induces through the Biot-Savart law (8) satisfies the no-penetration condition,
0y /0s = 0 on dD. Recall that (8) represents the Green’s function for the whole plane.
We may have achieved this using boundary elements; in any case there are only vorticity
elements (so that i is defined and single-valued), and none of them are inside D. The
formula (8) can be applied for x inside D, and there V24 = w = 0. Therefore ¢ satisfies:

v 0 in D, (35a)
W 0 onaD. (35b)
Js
This is Laplace’s equation with a Dirichlet boundary condition. It is a well-posed problem
with a unique solation up to an additive constant in each subregion: ¥ = C; in D;.
Therefore U, as given by (6), is identicaily zero in ). Also consider ¢y:/0n, the normal
derivative of ¢ as one approaches @11 from the inside. Since 4 is constant in D,
(»_{«l'»v = 0 on 9D, (36)
In
i.e., the tangential velocity just below the boundary is zero. This is a very useful result.
Several remarks. First, one could have first imposed 8y'/dn = 0 and obtained 0y/0ds = 0
as the by-product (Laplace’s equation with Neumann condition also has a unique solution
up to an additive constant). In other words, if (35a) holds (35h) and (36) are equivalent. In
the numerical method we elected to explicitly apply the no-penetration condition dy/ds =
0 because it requires less smoothness of ¢ (observe that (31) is written directly in terms
of ¢, not in terms of derivatives) and also because it seemed more important to conserve
mass exactly; the viscous effects, including the no-slip condition, are treated a little more
loosely. Second, the solution to (35) is unique only if 1) is bounded and AD is closed,
that is, for an external flow. Third, the argument on the normal derivative applies only if
one can approach @0 from the inside, that is, if D has a finite thickness. The argument
totally breaks down for an infinitely thin body, e.g., a p'ate, and in the numerical context
one needs to be carefif the thickness of the body is not large enough ~ompared with the
spacing of the vortices along the wall.

it el et .
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Figure 4a. Flow past a bluff body, just after impulsive start. -- boundary;
e vortices; -— velocity vectors

The behavior of the velocity field is illustrated in Fig. 4. A simple body shape was
considered, just after an impulsive start (i.e., there are no free vortices yet). Thus we have
irrotational flow around the body. Boundary vortices were used to enforce the yp/3s = 0
condition, discretized as in (31). The velocity vectors computed using (26) are plotted
at the nodes of a regular grid, including inside the body. In Fig. 4a one recognizes the
usual potential-flow solution outside the body. Inside the hody, the velocity vectors are
very smzll, showing that the iormal argument base i on Laplace’s equation (35) does work
well nun erically. This was not entirely obvious, because usually the tunction §, in (23)
does not have bounded support, so that there is a little residual vorticity inside the body,
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and also because we forced ¥ to take the same value (C;) only at the discr: te points X;
(see (31)). The natural smoothness of solutions to Laplace’s equation helps. In Fig. 4 the
boundary elements represent a vortex sheet, and the strength dI'/ds of the sheet gives the
velocity jump across the sheet. Therefore dI'/ds gives the tangential velocily above the
clements. Thus once the boundary vortices are known it is a very simple matter to obtain
the limiting velocity of the potential flow at the wall, and the surface pressure through
Bernoulli’s equation. Thus even for potential flow ihe method of boundary vortices has a
distinct advantage over those bi. ..l un sources or doublets.

7.2. Creation of vorticity

The interpretation now differs for inviscid and viscous flow. In viscous flow the vortices
along the boundary are not considered as mathematical tools to enforce a boundary con-
ditiou, but as actual vorticity that is imparted to the fluid by the shear stress at the wall.
Solid walls have long been interpreted as sources of vorticity (Lighthill 1963). New vortices
are created at every step and released into the fluid, just like at the trailing edge for the
nixing layer (§6.3), but now all along the wall (Chorin 1973). The circulation of the new
vortices is computed as is they were bound vortices, but they are immediately considered
as free vortices and allowed to move with the fluid. Symbolically, their contribution to ¢
is transferred from 1 to ¢y, on the right-hand side of (31), so that ¥« + ¢'7 alone satisfies
the boundary condition. The vortices then move according to (20), by an amount that is
O(At). This alters v, + ¢ by an amount O(At), so when (31) is solved again ¥, and
therefore the circulation of the new vortices are Q(At). Thus, a small amount of vorticity
is released at each step. The vortices are created not right on the boundary, but a small
distance dy outside it. There are “wall points” X, where (31) (with Q; = 0) is applied,
and “creation points”, say X' where the new vortices are placed.

The wall points and creation points can be distinguished in Fig. 4b, which is a detail
of Fig. 4a. Notice the smooth potential flow away from the wall, the veloaity vectors
becoming very small inside the body, and the transition region in which the direction of
the velocity fluctuates. The microscopic description of the wall (on the scale of X4 - X;|)
is a little crude, but on a macroscopic level the method has the following advantage. The
row of vortices in Fig. b (and in general with any attached boundary layer, {orms a vortex
sheet. The tangential velocity above the shear layer is 7., the velocity of (he potential
How, aud the velocity below it is zero. Therefore the vortices translate along ‘he wall at
a velocity U7, /2. This is known to be correct, in the sense that in a boundary layer the
average velocity of the vorticity, defined by

lige o / v wdy / / w dy (37)
v 0

is precisely equal to {7, /2 (just use w = - u, and an integration by parts). The flux of
vorticity along the wall is an important quantity and is correct (as mentioned earlier, it
can be very inaccurate when image vortices are used). This is another example of Low
simall-scale errors can cancel each other so that integrated quantities (here, U/, ) are correct.

As in the inviscid Hows, we need an extra equation to close the system (31) for each
body. 'This condition is that the circulations of the vortices created along each body t
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Figure 4b. Flow past a blufi body, just after impulsive start (detail of Fig. 4a).
-0- boundary and wall points X;; v vortices at creation points i;;
-+ velocity vectors

each time step add up to zero (Wu & Sankar 1980):

M
Moo (38)
) 1

Note that this condition is rigorous, uulike (32) which looks the saine but was arbitrary
(actually, (38) was known and (32) was chosen by analogy). If one considers the whole flow,
Wd8) iaplies that the total cireulation is conserved, a well-known result, see (13). However,
(38) is a stronger condition since it applies to each body separately. In summary, for each
body described by A wall points there are M 1 type-(31) equations and one of type (38).
Note that the type-($1) equations are coupled between bodies, so that the whole matrix
is full (except for the few type-(38) lines).

In inviscid flow, w can have a singularity of the order of a one-dimensional Dirac dis-
tribution, and ¢ is continuous but with a julip of its normal derivative across 3D, lu
viscous Hlow, w has a jump across d1 but 1s bounded, and both derivatives of ¢ are con-

tinuous. Therefore (36) applies ou either side of #1),, 1.e., the no-slip condition is satisfied.
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w is bounded because with viscosity it cannot remain in a sheet; instead it diffuses ito
the fluid. The mechanism which prevents it from accumulating at the wall is viscous;
thus the vortex-creation algorithm is consistent only with a viscous flow solver. In actual
calculations numerical offects play a strong role in this process, see §7.4 and §.2.

Several slight generalizations are possible. If the body is translating, this can be taken
into account using the Qs in (31). If the body is rotating at an angular velocity § the
situation is a little more involved since there is vorticity w = 29 inside [). Again, one
adjusts the Q,’s. The stream function induced by the inside vorticity can be computed
with the Contour Dynamics formula (Zabusky, Hughes, & Roberts 1979) and subtracted
from the right-hand side of (31). This was done by Spalart & Leonard (1981) for the
dynamic-stall study. see Fig. 7. On the other hand, if the body is deforming or several
bodies are in relative motion there is an extra difficulty because the matrix involved in
(31) becomes time-dependent, so that it has to be computed and inverted at each step.
Finally, in three dimensions the same argument as in (35) can be applied to the vecior
potential. Thus the extension to 3D is possible, but it has not been made yet; we first
need to obtain a robust method for unbounded 3D flows.

7.4. Choice of numerical paramelers®

In the creation algorithii just described, three length scales are involved near the wall.
As before (§6.2) we have A, the spacing between the wall points, and o, the core radius.
Now there is also dy, the distance from the wall to the creation points. The requirements
conflict. dg should be large enough compared with e for the residual vorticitv inside
the body to be small, but it should also be small enough compared with A to maintain
a strong coupling between the creation point and the wall point (so that the matrix is
well-conditioned). Moreover, @ should be large enoreh compared with A for the cores to
overlap in the s direction, so that the velocity fizld is as smmooth as possibie (Fig. 4b). The
difficulty arises because the vortices are cirenlar in a region, the boundary layer, where the
length scales in the s and n direction are naturally disproportionate. This is partly what
motivates separate treatments of the boundary layer (see £8).

For viscous flows, a quantitative conditiol asin §6.2 has not been obtained; ¢4 cannot be
forced to give the right mass flux from X,; to 0o without making the vortex cores impinge
on the boundary. In that sense, the actual boundary is blurred, somewhere between the
wall points and the creation points. Figure 4b shows a satisfactory set of parameters:
do - A/?2, 0 = A /4, where A, 1s an average over the boundary: A : S/M where S is
the length of the boundary. The need for a balance between A, dg and o implies that the
local value of A should not have very wide variations. It is helpful to cluster the points
(thus reducing ) in the vegions with high curvature and near sharp corners, but this
clustering shonld be moderate. Typically, & should not vary by more than a factor of 2.

7.4. Kulta condition

The Kutta condition, like conformal mappings and image vortices, is a major tool of
classical hydrodynamic theory, and it has been explicitly incorporated in many vortex
methods (e, Stansby & Dixon (19%2}). Actually, a generalization of the classical condi-
tion (which just provides the circulation for steady flow on an airfoil with a single sharp
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trailing edge) was needed since the flows have vorticity and are time-dependent, and there
may be several sharp edges, like on a square. However the idea is the same: the velocity
at any sharp corner must be finite. Note that “Kutta conditions” have been applied to
smooth surfaces at separation, whici is probably an improper use of the wc.u (in fact, one
is just applying the no-slip condition). Note also that a complete viscous method does not
need the I'utta condition, because iliis condition i1s simply the result of separation of the
boundary layers, which an accurate viscous calculaticn can account for.

It turns out that the method outlined in §7.2, with creation of vorticity and the no-slip
condition satisfied all along 8D, does a good job of reproducing this viscous behavior, even
when the viscous terms are not inciuded. For instance in Fig. 1 the flow near the various
trailing edges and convex sharp corners is physically correct, although no special treatment
or extra condition was applied there. When confronted with a convex sharp corner, the
method naturally expels boundary-layer vorticity into the outer fiow until a smooth flow
without large velocities around the corner is established. The high curvature causes a rapid
acceleration and deceleration of the boundary layer, which causes separation. Vorticity is
released until the streamline originating at the corner is aligned with the upstream side of
the corner.

There are two major reasons for this “pseudo-viscous” behavior. The first is that the
vortices are created at a small but nonzero distance dy rom the wall so that whenever
there is a deceleration of the boundary iayer they acquire a small velocity component
directed away from the wall, which is what initiates separation. The second is that time-
integration errors, especially with large velocities and strong streamline curvature, move
the vortices away from the wall. The analogies between integration errors and viscous
cffects are discussed in more detail in §8.2 and 9.1, In any case this somewhat fortuitous
hehavior is consistent, and the flow near sharp edges has niways been physically correct.
Note that the shedding of vorticity can be only transient as on a starting airfoil without
stall, or permanent as in Fig. 1 or in the case of flow pust a square. The separation from
smooth surfaces 15 a much more delicate effect, and is discussed in detail in §8.

7.5. Evample: starting vorlter on an arrfoil

The flow development aronnd an airfoil at incidence started impulsively from rest is
considercc, and will help clarify the issue of the Kutta condition. This i1s a classical
problemy (Prandtl & Tietjens 1934). The airfoil is NACA 0012; the integral boundary-
layer treatment is activated (sce §8.2) and the Reynolds number is high. Figure 5 shows
four snapshots of the flow. At first one sees a sheet of vortices leaving the leading edge and
curling up. The starting vortex then grows iu size. Since total circulation is conserved, an
opposite circulation remains on the airfoil, contained in the boundary layers. A sheet of
vortices connects the primary vortex and the trailing edge. This sheet clearly has a nonzero
circulation {velocity jump), since it undergoes a Kelvin-Helmholtz instability. Thus, the
circulation en the airfoil is progressively brought up to its final valie. In fact, the downwash
of the vortex on the airfoil reduces the eflective angle of attack, and tends to 0 only like
1/t. The last snapshot is at much larger time; the wake now has zero circulation (note
that it does not roll up any more) and the fiow leaves the trailing edge smoothly. The
{orce vector at early times shows a lower lift than in the final state, as well as some drag
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Figure 5. Airfoil  starting impulsively  without  initial  circulation.
a) tWeo/c = 0.02; b) tlas/c = 0.2; 7) tUs/c = 0.3;d) tUg/c — 00.
¢ is the chord and Uy the velocity. - -- vortices; | force

(induced drag from the starting vortex). At large times the drag is very small.

7.6. Pressure and force extraction”

The pressure was eliminated when the curl of (1b) was ¢ ken to derive (4) and is not
necessary to advance the vorticity equation, but one often needs it as a diagnostic or for
the treatment of boundary layers. The wall pressure and the forces on the bodies can be
obtained directly from the rate of creation of vorticity. Consider a wall with s and n the
tangential and normal coordinates. Equation (7) can be written w, = ~V.(Uw - vVw),
i.e., the flux of vorticity is Uw —vVw, which reduces to —vVw at the wall since U = 0. We
take the dot product with the normal vector n to obtain the flux through the boundary:
—vOw/dn. This is the rate at which the wall is “creating vorticity”. Now consider the
momentum equation (1b); at the wall it reduces to Vp = vV2U or equivalently Vp =
-u(V x ) (using a vector identity). In 2D, or in 3D with a flat surface, one can show

e o
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that n x (V x w) + n.(Vw) = 0 (in 3D, curvature seems to introduce another term). In
those cases we then get n x Vp = v8w/dn, or in 2D

dp dw 0T
5; = *1/57; = 5_351- (39)

The notation 9°T"/dsd1 is appropriate since this is a rate of creatjon of circulation per unit
iength and unit time. This quantity is known, since we are creating the new vortices at
every time stey. It is then a simple matter to obtain the wall pressure in 2D: (39) gives us

the derivative of the pressure along the wall. We usually apply the trapezoidal rule and
write

o+ T,

Pj+1 —p; = AL (40)
where the new vortices of circulation I'; and T, | are created during a step of length At.
If we integrate (39) around the wall, since p is single-valued we get
*1
— ds = 0, 41
dsor (41)

that is, the total circulation created along each body is 0. This is how (38) was derived
by Wu & Sankar (1980). Thus if we apply (38} the wall pressure given by (39) returns
to exactly the same value after going around the body, which is not always the case with
other methods for computing the pressure. A weakness of (39) is that it gives p only up
to an additive constant. In many cases, the front part of the body is in contact with
irrotational fluid from upstream; one can then obtain a good estimate of the additive
constant by assigning the stagnation pressure to the front stagnation point (this neglects
the unsteadiness in Bernoulli’s equation). Also, this method does not provide the pressure
away from the wall. One could however use this wall pressure as boundary condition
for the Poisson equation Vip = -V (U.VU) (although the additive constants would be
troublesome).

The equation dp/ds = 9°I'/9s0t which led to (40) is much less sensitive to the viscous
details of the boundary layer (inore specifically, the exact distribution of the vorticity in the
normal direction) than dp/ds == - v8w/n (used by Chorin (1973)). Thus (40) is very well
adapted to vortex methods aud an accurate wall pressure can be obtained even with a crude
representation of the boundary layer itrelf. For instance if onc has a steady attached flow
the flux of vorticity along the wall is {7%, 2 as mentioned earlicr (§7.2). It is balanced by a
Hux of vorticity through the wall at a rate d(I72/2)/ds; thus we get dp/ds = —d(U?/2)/ds,
i.e., the well-known Bernoulli equation. Many procedures have been proposed to obtain
the pressure from the time-dependent version of Bernoulli’s equation; these methods are
very cumbersome in separated flows because of the numerous branch cuts in the velocity
potential {ure for each vortex). '

The glebal pressure force on a body is given by
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After integration by parts and use of (39) this becomes

a’r
e, X ]{Bsat x ds, (43)

which is the negative of (14), applied to the newly-created vorticity. This is not a coin-
cidence. Neglect the viscosity for now. What happens is that the motion of the vortices
under (26) preserves (14) (the momentum of the fluid), and that the creation of vorticity
effects the exchange of momentum between body and fluid. Thus (43) amounts to a global
momentum balance (but it cz be applied to each body separately). One can check that
(43) gives the right “apparent mass” for a body undergoing acceleration. A similar formula
holds for the moment on the body, using the invariant (15) (Wu & Sankar 1980). If the
viscosity is not neglected, for instance if a random walk is used, then (14) is not (and
should not be) conserved when a vortex collides with the wall, and this is how the friction
force comes in. In practice, even without random walk there are such collisions due to
noise in the velocity field near the boundary (see §8.2 and 9.3) so that the pressure force
and the momentum balance do not exactly agrce, but this is a small effect, and (39) and
(43) have been very satisfactory at high Reynolds numbers.
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8. Separate treatment of tle bowadary .ayers

8.1. Overview

The boundary layers are the most difficult regions for a vortex method for at least three
reasons. First, the standard method uses radially symmetric elements and therefore is not
adapted to the disparate scales near the wall (with finite-difference methods, high-aspect-
ratio grids are routinely used near the wall). This resuits in significant noise in the normal
component of velocity; recall Fig. 4b. Seconc, near the wall the viscous terms become
dominant, and the available vortex methods do not treat them very efficienily. Third, the
boundary-layer region is usually close to being steady in Bulerian cooidinates: dw/0t is
small, in contrast with the outer region where it is the Langrangian derivative Dw/Dt
which is small. Thus Eulerian methods have an intrinsic advantage in the boundary layer.

One response to the problem of disparate scales is Teng’s (1982) method, which uses
elliptic vortices. Teng applied it only to a boundary layer, using identical ellipses and a
random walk for the viscosity. e obtained good results, but apparently the method has
not been used further. One couid ceriainly extend the idea by using ellipses of different
eccentricities; the vortices would be very flat near the wall and circular away from it. The
ellipse eccentricity and orientation would be simple functions of the distance to the nearest
wall. Note that such a concept is quite dinerent from one in which the ellipse parameters
would obey dynaical equations reflecting the straining and the self-induced rotation. The
ellipses are introduced for kineratic reasons oaly; to obtain a inore realistic flow field near
the wall. A drawback ¢f Teng's niethod is inat the formula for the velocity induced by
an elliptic vortex is much more complex than for circular blobs, so that the method can
be competitive only if an ellipse can replace at ieast several biobs. It would pay to find a
simpler formula for an “elliptical blob”.

Many methods can be found in the litesaiure in which the no-slip condition is not
enforced using the boundary elemenis as descrived in §7. Most often the no-penetration
condition is enforced using images, and there are a few “separation points” at which vortices
are created and released into the flow (Lewis 1981, Stansby & Dixon 1982, etc.). When
the body has convex sharp corners, they are obviously going to cause separation, and it
is consistent to apply a Kutta condition. The rate of release of vorticity is U?/2, with
the appropriate sign, where (/¢ the edge velocity of the upstream boundary layer. This
prescribes the circulation of the new vortex, ana the Kutta condition provides a condition
on its position. Such methods satisfy the intaition and have the major advantage that
only a few new vortices are created at every step, compared with hundreds in the method
presented in §7.2. They are typical of applications on minicomputers. Ou the other hand,
the use of the Kutta condition is still very delicate. Another weakness is that separation,
in the sense of a transfer of vorticity from the wall region to the outer region, does not
accur only at the obvious points. “Secondary separation” occurs at random on the back
face of bluff bodies, and its negleci may be largely responsible for the excess circulation
found by some studies and sometimes compensated for by arbitrary means (see §9.6).
Stanshy & Dixon (1982) emphasize the importance of secondary separation. In the long
run, and especially for smooth bodies, methods based on a few selected separation points

will probably be superseded by those wiica allow separation in any region, depending on
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the boundary-layer dynamics.

The idea of using an inviscid solver for the outer flow and a boundary-layer solver near
the wall is old, and has been very successful for attached flows. In such a case one is
primarily interested in the viscous friction drag, and possibly in the displacement. effect
on the outer flow. The trouble starts when the flow separates; the standard boundary-
layer equations develop the Goldstein singularity. Any proposal to use the boundary-layer
equations for a separated flow should include a discussion of this singularity. It is all too
easy to mistake its eflects for purely numerical problems, or conversely to suppress them
using numerical dissipation.

8.2. Simple deluy of separation

As mentioned already the vortices induce a fujr amount of noise near the wall, which
tends to scatter them. As a result, some move away from the wall, and others collide with
it. The ones that collide can be pushed back, or they can be absorbed and their circulation
be reintroduced a distarce d, from the wall (see £9.9). Statistically, the vorticity tends to
drift away from the wall. As soon as there is an adverse pressure gradient, the straining
adds to this effect, and separation occurs. This is a mild case of the situation described for
sharp edges in §7./. The pure vortex method consistently predicts separation at the onset
of an adverse pressure gradient, which is essentially the behavior of a laminar boundary
layer. With turbulent boundary layers, separation can take place much farther along the
wall and a 2D .nethod is unable i reproduce this by itself.

This led to the idea of predicting the separation point by a separate method, which can
take the Reynolds number and the effects of turbulence into account, and intervening in
the dynamics of the vortices to delay their separation up to the correct position. If this
ntervention is performied in a sensible manner, we can retain the smooth blending between
the attached Loundary-layer vorticity and the outside vorticity (this is not achieved with
the methods that release vortices only at a few points and do not enforce the no-shp
condition).

At every time step, the pressure distribution is computed using (40). With it, the two
boundary layers starting at the front stagnation point of each body are calculated. So far,
only integral methods (Thwaites” and Head s, see Cebeci & Bradshaw 1977) have been used,
i conjunction with Granville's transition criterion, and the time-dependent effects on the
boundary layers have been neglected. Thus, there is room for experimentation with more
sophisticated boundary-layer solvers. The only information needed from the boundary-
layer solution are the separation points (we do not attempt to continue the boundary-layer
solution beyond separation). On each hody, downstream of these two primary separation
points the vortices are free to behave normally, so that secondary separation can take
place.

Upstream of the separation points indicated by the boundary layer solution, we prevent
the statistical drift and separation of the vortices simply by re-absorbing the new vortices
after only one step. A fresh regular row of vortices carries the boundary-layer vorticity as in
Fig. 4, representing a thin attached boundary layer. Just beyond the indicated separation
point, the vortices are suddenly free and subjected to the straining associated with the
adverse pressure gradient, and they leave the vicinity of the wall. This procedure achicves
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A

Figure 6. Simulation of the flow over an airfoil. a) without delay of separation;
b) with delay. - .- vortices; | lift and drag

the goal of making the vortices separate approximately in the right place.

Figure 6 shows the flow over an airfoil calculated without and with separation delay.
In Fig. 6a, observe how the vortices remain attached on the lower surface, thanks to the
favorable pressure gradient, but separate just downstream of the leading edge on the upper
surface, in a mild adverse gradient. This is what laminar boundary layers would do. In
Fig. 6b with a very high Reynolds number the mntegral boundary-layer solvers predicted
turbulence, and separation only at the trailing edge. This aciivated the separation-delay
device and we are left with aitached boundary layers and a thin, smooth wake. The lift is
higher, and there is alniost no drag. Separation delay was also applied in Fig. 1; it made
a difference on the upper surface of the slat, and on element 4. It was fully responsible for
the Reynolds-number dependence that was described (§1.1).

This device has been used extensively, and is very helpful in many cases (Fig. 1, 5, 6b,
7, 13 and 14). It has weaknesses. I{ cannot account for reattachment. The weakest part
of the solution is the transition prediction (but this is true of any method). To obtain
a flow pattern that agreed with experiment in Fig. 7, the transition criterion had to be
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adjusted; the increase in Ry {rom the instability point to the transition point was taken
as half of Granville’s correlation. Another minor problem ocenrs when ouc cannet find
the front stagnation point because the flow is too disturbed in front of the body. This
occurs in the rotating-stall .alculation, see Fig. 14. In tiat case, onc just bypasses the
boundary-layer solution for this body at this step. Finally, the integral methods have a
tendency to predict separation a few wall points downstrean: of sharp corners, and one
needs to override this prediction and set the vortices free a few points upstream of the
corner. Because of these issues, when starting with a new shape it is good practice to first
simulate the flow without separation delay, than activate the device if there is a need for
it, and carefully check the hehavior of the boundary layers.

Figure 7 shows a casc in which separation delay made a significant difference. An NACA
0012 airfoil is oscillating from 5° to 25° at a reduced trequency of 0.25 (Spalart & Leonard
1981). The overall flow strongly depends uson separation on the upper surface just behind
the leading edge, and this separation is controlled by transition in the boundary layer. The
Reynolds number was 2.5 10°. The forces and moments on the airfoil were in very good
the agreement with experiments (Spalait, Leonard & Baganoff 1983).

8.9. Chorin’s tile method"

In 1978 Chorin introduced a vortex-like method for the boundary layer. As before, the “
elements carry circulation, move with the fluid, and undergo a random walk for viscous |
diffusion. However they are now “sheets” or “tiles” and the velocity is computed in a much |
simpler manner thanks to the boundary-layer approximations (the tiles interact only with ‘
their neighbors). This method is much cheaper computationally than the usual method |
or Teng’s method (1982), and is designed for use in a hybrid algorithm, with conventional %
vortices away from the wall. Circulation is exchanged by the two subdomains, primarily |
in the direction sheet -+ blob. Chorin discusses ihe Goldstein singularity and the need ‘
for a viscous-inviscid counling sirategy to remove it, but {he subsequent users of the tile
metnod completely overlooked this issue.

Cheer (1983) applied the complete hybrid method to the flow past a circle and Joukovsky
airfoils, with Reynolds numbers of about 1000. She obtained flows with “laminar” behavior,
i.e., separation as soon as the boundary layer enters the adverse pressure gradient, and
satisfactory drag and hift values. Ghoniemn & Gagnon (1987) applied it to an internal flow
at rather low Reynolds numibers, which seems a little superfiuous since there were no thin
borndary layers (the inflow was a parabolic profile); quite probably a pure vortex-blob
method would do just as well. lu summary, the tile method succeeded in introducing
the boundary-layer character for the near-wall flow; it is fast and solves the first problem
described at the beginuing of 48 (the scale disparity), but not really the other two. The
convergence of the random-walk method is rather slow here as it is with blobs. Also, the
Goldstein singularity is a major problem and Chorin himself (1978) did not assert that it
was fully solved.

AR A R
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. 5 8.4. Coupling with « fimite-difference solver*

As mentioned above, Eulerian miethods have significant advantages for boundary layers,
especially if they are steady or quasi-steady, which makes the time integration undemand-
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ing. Furthermore, the location of the steep gradienis is known and it is easy to cluster
the grid points near the wall. This niotivated an effort to couple an inviscid vortex solver,
for the outer region, and a finite-G.i.erence solver, for the wall region (Spalart, Leonard &

Baganoff 1983).

J777777777777777777777

Figure 8. Sketch of the hybrid finite-chfference/vortex algorithm. o vortices; —
grid lines; -+ velocity

The inner region is a thin strip along the wall, see Fig. ¥, The boundary-layer vorticity
equations are solved using a standard. implicit, centered finite-difference scheme (T. Pul-
liam, personal commuunication 1981). Simple transition and turbulence models are used.
The challenge is in the coupling with the outer region. The two regions exchange circu-
lation as in the tile method, according to the direction of the velocity at the interface.
The coupling of the velocity fields is more delicate. A viscous-inviscid coupling was imple-
mented based on the displaceme t thickness (the centroid of the inner-region vorticity).
The procedure is intuitively correct and very similar to the ones used in attached flows,
but there 1s no proof that it actually removes the Goldstein singularity, especially when
large amounts of vorticity cross the boundary. Some numerical difficulties (oscillations) in
the separation region suggest that it does not (see Spalart ef al. 1983 for details). Partly
for this reason, this method hias not heen as robust, and has received much less use than
the simpler “delay”™ method (§8.2).

The method however gave encouraging results for the flow past a circle. The “drag

crisis” in this flow at Reyvnolds numbers near 3 - 10° is one of the major challenges in
the field of viscous flows. The flow was caleulated foi Reynolds numbers between 10*
(the lower lim¢* for thin boundary lavers to form) to 3 » 107 (beyond which there were
no experiments). Figure 9 shows that a decrease in drag coeflicient was observed, but
that the crisis itself (including he sudden drop to very low drag values and the steady
lifting states observed in experiments) was not. ‘The drag decreased at higher Reynolds
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numbers because the boundary layers transitioned; the turbulence model then kept the
vorticity attached longer, so that it crossed the boundary into the outer region farther
downstream. This is illustrated in Fig. 10; the mean streamlines, shown at Re = 10* and
10°%, reflect the position of the separation region. By symmetry, only half of the flow needs
to be shown. The Reynolds-number effect was qualitatively correct, and the quantitative
agreement with experiments, over a wide range of Reynolds numbers, was fair.

For the future, the use of an Eulerian solver for the inner region should be the most
efficient procedure. On the other hand, it is not the most elegant since it is a hybrid,
and the coupling and singularity issues definitely need to be re-examined. One could of
course solve the full Navier-Stokes equations in the inner region; the obstacle there is
that one would need to solve a Poisson equation to obtain the velocity field, instead of just
integrating the equations uy = —w and vy, = —u, up from the wall. The velocity boundary
coundition on the interface would be a serious problem.
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Figure 10. Mean streamlines past a circular cylinder. a) Re -~ 10% b) Re -~ 108
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9. Practical aspects

9.1. Tunc-integration schemes

A wide variety of time-integration schemes are used in Computational Fluid Dynamics,
and the choice is often a matter of taste in addition to the technical corcerns. Still, one
can narrow down the choice considerably in the case of vortex methods. The first point is
that all the schemes used have been explicit schemes. To use an implicit scheme one would
need to invert (26) or at least a linearized form of it, and (26) is too complex for this to be
done efficiently. Moreover the usual stability advantage of implicit methods is much less
crucial with vortex methods than with grid-based methods (see below). The second point
is that the most costly part of the algorithm, by far, is the evaluation of the time derivative
using (26). Also, the calculations use a relatively smiall amount of memory, so that storing
old values of the time derivative is not a problem. This suggests that multi-step schemes
are preferable to predictor-corrector scheies.

Based on these remarks the author has used the Adams-Bashforth second-order scheme,

., \
x, (11 At)=x,{t) A/(;U(xj,l) - éU(xl,i - Af)) (44)
for the integration of (20), which represents a good compromise betweer accuracy, sim-
plicity and cost. As nsual, the first step for each naw vortex is done using the Euler
scheme. A majority of the studies in the literature used either the Euler first order scheme
or Runge-Kutta schemes of second or fourth order (the Runge-Kutta second-order scheme
is also known as “modified Euler” or “Huen's scheme”). The use of the low-order Fuler
scheme, when the Adams-Bashforth scheme is hardly more costly, was motivated either by
i question of consistency with the random-walk algorithm (in Chorin’s method) or by a
faulty concept of numerical dissipation, as discussed below.

The integration of (20) is most difficult wien large accelerations are experienced by a
vortex, typically when it is close to another vortex. Therefore a good model problem is
the motion of just two vortices {Spalart & Leonard 1981). The problem can be expressed

in complex notation aud simplified 10

d: 1%}
. 45
dt o (45a)
)y 1 (45b)

where = is the separation vector between the two vortices, = is its conjugate and §is a
frequency. The exact solution s = cxpli§): the vortices orbit around each other with
angular velocity Q. Their distance is constant. It is a good exercise to program (45) and
observe the behavior with ditferent numerical schiemes.

One finds that with any scheme, if the time step Mt is large compared with 1/60 the
colution is inaccurate, However due to its nonlinearity (45a) reacts very differently from
the linear equations that are usually studiea, e.g., the equation dz/dt - 2z which has
the same exact solution. Usually, as an explicit scheme becomes inaceurate (because At
is too large) it also beconies unstable and the solution grows to infinity (it “blows up™).
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With (45a) the di-tance hetween the vortices grows until |z1*/Q is of the order of Af,
then settles down. The vo.uces now orbit at a lower angular velocity, Q/1z2. With some
schemes |z| will shiink again and in some cases one gets an oscillation, especially with
multistep schemes as the primary and spurious roots alternatively doininate {Spalart &
Leonard 1981). With the Adams-Bashforth scheme, such unphysical behavior has not been
observed.

The lesson to be learned here, which holds in practice with many vortices and has
been recognized by many authors (Milinazzo & Saffinan 1977, etc.), is that in almost
all situations time-integration errors tend to scatter the vortices. The scattering occurs
whenever the local rotation rate § is large compared with 1/At and corrects itself, since
the scattering precisely reduces Q. The corollary is that a sustained instability, with the
solution “blowing up” to infinity, never occurs. In that sense, the method is “robust”.
However, a solution can remain bounded and be very inaccarate. Also, a scattering of
vorticity reduces the velocity fluctuations and the kinetic energy. In that sense, it represents
a numerical dissipation. Lagrangian methods, unlike fixed-grid Eulerian methods, allow a
perfect convection of flow structures by a uniform velocity field; however when gradients
are present inaccuracies show up as with any other method.

The scattering of vortices has implications for the invariants (11, 12, 15, 16). The total
vorticity (9, 13) and the impulse (10, 14) are linear quantities in terms of the vortex
positions x,. Therefore with the common time-integration schemes which are all unear,
if (9, 10, 13, 14) are conserved by the spatial discretization they are still conserved even
allowing for time-lutegration errors in (20). This is not so for the nonlinear invariants
(11,12, 15, 16); they are only “semi-conserved™ and have often been vied as measures of
the integration errors. For evample Nakamura, Leonard & Spalart (1982) defined a global
measure of the numerical dissipation, an “effective viscosity™, ased the time evolution
of (15), primarily to verify that it was purely caused by thac-intey -ation errors (indeed,
it was). Some rescarchers pushed this reasoning one step too far, concluding that time-
integration errors were desirable, sinee they introduee the viscosity that is so d.f . ult
to introduce by other means! iy then use the most inaccurate and dissipative (when
applied to (15)) scheme, the first-order Euler scheme. Nakamura of al. never implied that
the effective viscosity had any meaning locaily. Moreover, if etrors are what ove is after,
itis cheaper to just increase the time step, rather than switching to a lower-order schetae,

One final remark about steady flows. If the velocity field is naturally time-independent,
grid-based methods can usnally find the solution faster by direct solution or by relaxation
techn. -ues than by a straightforw-rd integration in time. Vortex methods do not have
this option and treat any flow as tiime-dependent; the vortices maove even in a steady flow.
Fortunately, most sepinated flows are strongly ansteady, so this difference is not of muck
importance in practice,

0.2, (o fllln‘lunl.\

In a separated-How calenlation one will need to cotpute F and F many times, so that
s desirable for both to have siniple formulas. Consequently it is convenient to choose F'
first. As mentioned earlier the Gaussian core (215 Lat with a fixed radius o substituted

for virt) is attractive but is expensive to compute, and yields only second-order accuracy.
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A very simple core profile was used in ali the cases shown in these notes:
F(r)= . (46)

It is second-order accurate too. Its only weakness is that the vorticity decays rather
slowly at large distances, like 7%, so that the residual vorticity mentioned in §7.5. is not
neg'igible. A vorticity distribution with bounded support or at least faster than r~* decay
would he preferable as far as the interaction with walls is concerned. Hald (1979) and
Beale & Majda (1982, 1985) give formulas for higher-order cores. Recall thai Perlman
(1985) found that these performed better only if the vortices remained well-ordered, so
that in complex separated fiows their advantage is probably marginal.

9.3. Control of the vortcs count

In most applications, many new vortices are created at every time step and added to
the list. For instance in the calculation of Fig. 1, there are about 1300 vortices in total,
and 249 new ones are created along the wall at each step. Clearly, useful calculations are
possible only if vortices are deleted at aboui the same rate they are created.

Virst take the simple case of the mixing layer of Fig. 2. At each step, one new vortex
is created at the trailing edge, and one “old” vortex is deleted near the outflow boundary.
The easiest proc~dure is to delete the oldest vortex; a slightly better one is to delete the
vortex that is farthest downstream. This makes little difference, because the last 10 or 20%
of the domain are not included in the “measurements” (c.g., velocitics, Reynolds stresses)
anyway since that region is disturbed by the lack of vortices beyond the outflow boundary.
Either method allows one to gencrate a satisfactory statistically-steady state of the flow,
and to maintain it as long as desired.

In the less simple cases vith solid bodies, two operations allow one to control the num ber
of vortices. The first one is .he absorption of vortices by the wall. When a vortex collides
with the wall, one has several options. One can reflect it as in an elastic collision, or
just push it back to the wall. A third option which is consistent with the treatment of
viscous boundaries described in £7.2 is simiply to delete the vortex. If this is done before
the evaluation of ¢ for (31), the right-hand side of (31 will reflect the loss of circulation
near the wall, and the new vortices will make up for it (also adjust the last line of the
right-hand sidc, (32)). This absorption procedure has the advantage of helping to contain
the number of vortices, and of slightly reducing the noisc ne .r the wall.

The absorption of vortices is helpful, but is not enough since it is not under the user’s
control; a inajosity of vortices siill leave the vicinity of the wall and move into the wake.
Thus one needs a more active and adjustable means of liting N. This can be done by
merging vortices. The methed used is adapted from Rogallo's (personal communication,
NASA Ames Rescarch Center, 1979}, Deflenbaugh & Marshall (1976) also used a simple
merging device. At every step. pairs of vordees are merged into single vortices. The goal
is 1o achieve this with the least amount of niodification of the velocity field.

Since a large local modification is unavoidable, it makes sense to require that the velocity
‘4 the far field be altered as little as possible. Suppose the vortices j and k are merged,

and the new vortex is given the circulation I and the position =", Using complex notation
2 2
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(48)

The two leading terms are removed by taking I~ 1Y, ¢ Iy and 2’ - (U'jzj + Tizge) /T
the new vortex inherits the sui of the circulations of the old ones, and is placed at their
centroid. This could be expected: the circulation (13) aud the vortex centroid (14) are
conserved. On the other hand, (15) and (16) cannot he conserved (recall that they were
already not conserved hecause of time-integration errors).

The next term in (48) cannot be removed and we take it as the merging criterion, i.e.,
we merge a pair only if this terim is below some tolerance. After insertion of I' and .* and
taking of the modulus it becomes:

: 14]’["“ .If_l__f <k 2 (49)

o+ e P ’
Consider the two factors in this estimate. The first one encourages merging of weak vortices
(small T'; and/or I'y). which is sensible since weak vortices cost as much as strong ones,
but carry less information. It also discourages merging of vortices with nearly opposite
circulations (small [I'; 1 1'¢]) which also makes sense since in such a merging =’ ends up
lar away from z; and zp which is not naturai.

The second factor encourages merging of close vortices (small

zi zx]) as one would
expect. We still need to preseribe (2 in the denoainator. The most sensitive place in the
flow is the wall region: therefore we insert the distances d, an'' d; from the vortices to the
closest wall. The formula that was finaily adopted is

2

e | o
LN R

“‘J i I“\} (l)(l }- ([7)‘/-’([)“ t (l,‘k)z/z

A

Ve. (50)

Notice how the formula was symimetrized with respect to d; and dy. The length parameter
1)y sdiow one to shift resolution closer to the walls (small Dy) or into the wake (larger Dy),
but the calenlations show little seusitivity to [y over a wide range (Spalart, Leonard &
Baganofl 1983). A typical value is 10% of the chord.

Finally, the quantity V5, in (50) has the dimensions of a veloeity and is the tolerance.
Typical values are small: less than 10 * tinies the freestream velocity. In practice it is most,
convenient to let the program adjust Vy during the run. One chooses a target number of
vortices, and employs a feedback mechanisin that vaises Vy if there are too many vortices,
and vice-versa. The merging procedure deseribed here has heen very convenient in practice,
is intuitively correct and has a rational basis in the Taylor expansions. On the other hand,

P




R E

50 P. R. Spalart

merging is a very noisy operation locally, and its effect on the convergence is unknown.
Therefore, it is not appropriate for all applications.

9.4. Efficient programming: operation counts
Vortex codes are relatively easy to opiimize, because almost all the operations are spent
computing the N? interactions in (26). Thus one really needs to optimize only about ten
lines of code. Ther> are a number of nearly-obvious tips. The division by 27 and the x
product should be done outside the O(N*) loop. The formulas for the two interactions
k — j and j — k, have a lot in cominon, name.y tne computation of

?

(51)

X = x? a

(%)~ X F(L‘n’i — Xl
Afier this, the ciiculations I'y, and +';j are presuimnably different and the overlap ends. One
should have an outer loop (k = 2, N) and an inner loop (j = 1,k - 1) and compute (51)
only once. There is no need to store it (which would occupy N? words of memory); use it
right away to increment Uy and U; (or store ail the j — k terms and sum them up outside
the j loop but inside the k loop). In 2D there is no need to compute any square root,
and one can avoid exponentials. The operation count is 8N? with the simplest core, (46),
and would be hardly higher for more complex but algebraic cores. In 3D, the symmetry
between & - j and j -~ k is useful too. One should also precompute quantities like the
tangent vector outside the O(N?) locp.

In practice, periodic calculations could be much more expensive than unbounded ones,
because the stream function and its derivatives involve the computation of several com-
plex exponentials N? times (see §10.1), and exponentials cost many floating-point op-
crations. However, this drawback can be completely eliminated with a little extra pro-
gramming. One needs the values of exp(im(zy z;)/p) for all values of k and j. What
one does before entering the O(N?) loop of the program is to precompute and store
exp(imzi/p) and exp(- imz;/p) for every k. Then the operation that is done N2 times
is exp(imzy/p) % exp(~iwz;/p): the exponentials have been eliminated. This can easily
speed up the execution by a factor of 4 or more, depending on the computer. In fact,
the O(N?) component of the operation count is only 18N? so a well-programmed periodic
methad is only about twice as expensive as the unbounded-flow method. Thus there is no
reason to approximate (52) by taking the first few terms in the series, as has sometimes
been done in the past. The same trick applies to the computation of the stream function
s at the wall points, for (31).

Another tip concerns the use of complex variables, in 2D. They are convenient, but
degrade the efficiency of some computers to some extent (the machines that slow down
when the loops have skips of 2). Some machines even refuse to vectorize any loops involving
complex variables. This should be checked carefully before writing a code.

9.5. Flow charts
Here we give flow charts of two prograis, named KPD1 and KPD2. Both are available
from COSMIC (a part of NASA) in the U. S., as are their periodic counterparts for
cascades. A listing of KPDI also is included in the author’s thesis (Spalart, Leonard &

-t gt k.
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Baganoff 1983) (there is an error on line 15, p. 107; replace NW by NWALL(L)}. KPD1
is the basic bluff-body code with no boundary layer treatment; KPD2 has the integral-
method treatment of the boundary layers (the “separation delay” of §8.2). The flow charts
provide an overview of the material covered until now, and specify the order in which the
various operations are performed.

Delete Vortices
__BT Create Vortices

that hit a wall

T

Merge Vortices || Advance Vortices

Figure 11. Flow chart of the KPD1 code

9.6. Assessment of the accuracy

This can be delicate in practice. Some numerical methods (in particular with explicit
time-integration schemes) give the user a strong warning when the time step is too long:
they “blow up”. Other methods (spectral, for instance) generate “wiggles” which are also
a warning that finer resolution is needed. Vortex methods do not give such warnings; in
most applications the vortices look disordered, but the calculation never blows up. This
is partly due to its automatic conservation of some key integral quantities (9, 10, 13, 14).
Again, the possibility that the calculation is not accurate on small scales but is accurate
on the intermediate and large scales is likely.

The most prominent result of a blufl-body calculation is the average drag coefficient
Cp. We treated four shapes with sharp corners, so that the primary separation points
were fixed, and compared with experimental results (Spalart 1984, and unpublished). The
shapes were a square, an equilateral triangle in two positions and a vertical flat plate or
thin airfoil. They were all treated with the same code and roughly the same resolution
(typically 1000 vortices). The results are summarized in a table (the — indicates the
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Figure 12. Flow chart of the KPD2 code

direction of the freestream velocity).

Shape Cp(calc.) Cp(exp.) ¢

- D 2.9 2.

— q 2.4 1.3

- | 2.8 1.75 i
J

The uncertainty is at least £0.2 on all the values. Even then, the disagreements are ;
significant. Note also that the calculation often over-predicts Cp, but not always. In i
j

general, the shedding frequency (Strouhal number) is better predicted than the drag. These
results are not very satisfactory, but we were unable to improve them or to convincingly
demonstrate the convergence of the method, even via large variations of the numerical
parameters (N, At, dg, etc.). The above table provides a severe but conservative estimate
of the performance of the author’s method. In some cases, the agreement with experiment
is much better, within 5% (see §10.1).
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Many of the comparable methods also overpredici the drag. One veaction to this is to
introduce a “fudge factor” to bring the drag down. Arguing that cancellation of vorticity
of opposite signs occurs in reality but not in the calculation (which is not even obvious)
some authors arbitrarily make the circulation of the vortices decay as they move into the
wake. By adjusting the decay rate on¢ can get any drag one wants. In the author’s mind
the idea of invoking Kelvin’s theorem, huilding a method around it, and then violating it
just to fine-tune one global quantity, ('p). is strange.

Milinazzo & Saffman (1977) already pointed out that “comparison with gross experimen-
tal features, such as drag, is not conclusive, and in any case the real flows are turbulent, and
therefore three-dimensional, at large Reynolds numbers.” This point is valid, especially
if the experimental flow has large-scale three-dimensionality. It is possible that much of
the drag difference is due to this effect. The author’s calculation of dynamic stall (Fig. 7)
agreed with experiment better than those for steady bodies. In this case, the whole span
of the wing oscillates in phase, which makes the flow more two-dimensional. The degree of
three-dimensionality of the flow past two-dimensional shapes, such as a circular cylinder
or a backward-facing step, is a matter of debate and the subject of ongoing experiments.
Reliable numerical simulations should also be obtained in the next few years.

In summary, there is no recipe for the estimation of the errors in a vortex calculation of '

a complex flow like Fig. 1. 1t is essential to monitor the vortices and velocity field as in
Fig. 1 or 4, but this is only as good as the user’s intuition of what the flow should look
like. Finally, it should be remembered that we are looking at very challenging flows. If one
tackled the multi-element airfoil with an existing finite-difference method, very probably
tae best one could do is a rather erude caleulation which would not enter its convergence
pattern, at least not with a reasonable mumber of points. One would also be dependent on
crude transition and turbulence models similar to those we used, so that the viscous effects
are very delicate with any method. Wlhen applied to complex flows, the vortex method
will not vield perfect results, but it will yield very useful ones.
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10. Treatment of cascades and screens

10.1. Spatially-periodic flows

The computation of two-dimensionai flows that are spatially periodic in one direction is
almost as simple as that of unbounded flows, and is useful for the treatment of temporally-
developing mixing layers and of cascades, for instance. Complex notation is convenient
here. Lamb (1945, p. 224) gives the formula for the stream function generated by a row of
vortices of circulation I' at the points zy + np, n being any integer (2o and p are complex):

(72 = z0) V]
Slll('— 5 >|J (52)

Compare this formula with (8). This funciion can be regularized by a “core” as in un-

us

r
P(z) = o 10@[

bounded flows and a convenient one is the analog of (46):

r p . (7(z- z)
1/)0(2):4—7;10g[‘;sm< . 0)

+ 02} . {53)

The rest of the method is identical to the unbounded case; one siriply substitutes (53), for
the stream function, and its derivatives, for the velociiy. See §9.4 for a tip in programming
(53). To make the visualizations consistent one chooses a “main period” between some
value z; and z; + p; if a vortex moves out of the main period (i.e., if the real part of
(z — z;)/p leaves the interval [0,1]) the vortex is translated by +p so that all the vortices
can be seen next to each other.

An example of a periodic calculation is the study of a row of chevrons, shown in Fig. 13.
These chevrons were candidates for an acoustic barrier around the inlet of a wind tunne] at
NASA Ames Research Center. The pressure drop across the barrier was estimated to be of
the order of 5 to 10 times the dynamic pressure, based on the ratio of the open area to the
pitch of the cascade (essentially the argument of Batchelor, 1967, p. 375). The calculation
predicted a much larger value: 80 times the dynamic pressure. The issue was settled
when experiments by Professor . Foss { Michigan State University) produced a value of
82. Such losses were unacceptable, and the design was dropped. The open-area argument
vastly underestimated the loss of energy in the 'ow due to the repeated separations. This
was one of the more successful and directly useful applications of the method.

10.2. A sunple model for screens®

Scrzens are often used in wind tunnels to generate hemogeneous turbulence, to introduce
a pressure drop (e.g., for mixing-layer studies), or somstimes to smooth out an irregular
flow and prevent separation on a cascade. liere we present a simple, macroscopic model
that can account for the latter three effects and is a good exercise in itself. It was used in
the chevron calculations (see Fig. 13). it could be used for nonperiodic geometries too.

Consider for simplicity a screen along the y axis in two dimensions. We model it as
a pressure jump Ap(y) = p(0*,y) — p(07,y). The eflect of the screen on the fluid is
equivalent to a body force f = Ap(y)é(x)e, with é the one-dimensional Dirac distribution
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Figure 13. Flow past two rows of chevrons. --- vortices; - - forces; - streamlines;
- - - screen

and e, the unit vector in r. To obtain the effect on the vorticity we take the curl of
which is - d(Ap)/dy é(r). There is a generation of vorticity at the rate - d(Ap)/dy per
unit length in y and unit time. This is easily modeled by creating new vortices along the
screen at each time step,

We still have to prescribe the value of Ap. In the chevron calenlations a pressure drop
proportional 1o the local dynamic pressure was assumed, that is: Ap - -~ (" ufu[/2 where u
is the local velocity in the » direction and (' is a positive constant and in general depends
on the solidity of the screen, the shape of the bars, and so on. (7 was set to 2. Near the
center of Fig. 13 there is a jet (closely spaced streamlines, corresponding to high velocity);
notice how it spreads out when it encounters the resistance of the screen, as expected,
resulting in a slightly more uniform flow behind the scereen.

So far, the simplest method has been used for the time integration: the value of v at
one step is used to compute Ap and the circulation of the new vortices for the next step.
This method worked with the paraneters used in the chevron study, but will produce an
instability for Targe enough values of the product (uiA1/ Ay, where Ay is the spacing of
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Figure 14. Propagation of a staii cell in a cascade. .- vortices; | forces;
- streamlines

the points that describe the screen. For large values of the product (in the limit €' — oo
one actually has a solid wall) one will need a fully coupled algorithm, instead of one which
goes back and forth between the fluid and the screen.

10.3. Computation of rotating stall in a cascadc”

The periodic version of the method was also applied to two-dimensional cascades of
airfoils with the hope of observing “rotaling stall”, or more appropriately “traveling stall”
(since the cascade is actually not circuiar). When a compressor stalls, the stall pattern is
often uneven from blade to blade, ana stall cells tend to propagate around the compressor
at a fraction of the velocity of the blades. Such a flow involves a multiply-connected domain
(since several blades are involved) and large regions of separation, which makes 1t a good
candidate for the vortex method.

Figure 14 is taken from Spalart (1684, 1985). ¥ive NACA 0012 airfoils are included
within the numerical period p. They are at 45° to the plane of the cascade. The incoming
flow, of magnitude 7y, gives them a 30° incidence. Let ¢ denote the chord of the airfoils;
the pitch was chosen equal to ¢, The time interval between frames in the figure is 2¢/U,.
The computation was started from irroiational flow with a dipole in the wake (to break the
blade-to-blade periodicity) and has been running loug enough to reach a well-developed
state (see Spalart 1985 for the transicnt behavior and other values for the stagger and
inflow angles). One observes a stall ccii which alters the flow near two of the blades,
and drastically reduces or even reverses the mass flux between them. The cell propagates
upwards at about 40% of U,. This figure, and the flow pattern, are in qualitative agreement
withi flow visualizations, but more detailec comparisons were not attempted. The method
is limited by its reliance on rather crude transition and turbulence models (as in the
dynamic-stall study), by the resolution which is becoming marginal (100 wall points and
300 vortices per blade), and by the fact that it is two-dimensional. However Speziale, Sisto
& Jonnavithula (1986) extended the study to cambered airfoils and a wider parameter

range.
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11. Time-saving algorithms”

11.1. Vorter-in-cell methods*

These methods discard the Green’s-function approach (3, 6, 8) and solve the Poisson
equation for the stream function by a grid method (Christiansen 1973). Typically, with
N' grid points the solution is obtained in O(N'log(N')) operations, so if N'is comparable
with N the vortex-in-cell method is much faster than the O(N?) method. In practice N'
is at least as large as N, and could be much larger if the vorticity distribution is very
intermittent. The procedure is to define a grid and to obtain vorticity values at the grid
points according to the circulation of the vortices (if any) present in the adjoining cells. The
vorticity is “transferred” to the grid, but only for the Poisson solution; the vortices reiain
their identity. The beauty of this method is that it still has the wow-dispersion advantage of
other vortex methods. Once the stream function is available it is differentiated to obtain
the grid values of the velocity. The velocity is then interpolated to the position of the
vortices and the vortices are moved, thus completing the work for this time step.

The best applications are those in which N' can be kept to a value close to N, that is,
when the vortical region is rather predictable and of simple shape, for instance an internal
flow or a mixing layer (Aref & Siggia 1980, Couét, Buneman & Leonard 1981). In such

3
cases, one can save a large fraction of the computational effort. The method is not grid-
X free, and since boundary conditions are needed on 3 the grid has to be body-fitted. This
would be a serious drawback in enginecring applications. Note also that the transfer and
‘ interpolation steps have a cost only O(N), but are hardly vectorizable. Another topic of
: rescarch is in the local errors associated with the exchange of information between the
E regularly-arranged grid points and the vortices, which can fall in any region of the grid
4 cell. The grid destroys the isotropy of the algorithm, and in general a vortex will have a

spurious sell-induced veloeity. See the work by Counét ef al. (1981) and Anderson (1985b).

11.2. Lumping methods®

These methods still use the Biot-Savart approach, hut reduce the operation count by
approximating some of the interaction terms in (26). using Taylor expansions. Spalart &
Leonard (1981) presented such an algorithii, claiming an operation count of order N*/2,
L. Greengard & Rokhlin (1987) claim Q(N') for their algorithm. Divide the domain where
the vortices are into a regular array of ccils. The cells are of size [, large enough to contain
many vortices each (in contrast with the vortex-in-cell method). They can overlap with
the solid body; in that sense the method is “practically” grid-free sinee the grid is not
body-fitted. Now consider two cells that are separated by at least a few times {. The
4 interactions are proportional to 1/, using complex notation. This function is analytic and
has a rapidly converging Taylor expansion. If Zp and Zy are the cell centers, z, 15 in cell

in cell N, we Taylor-expand the fuuction 1/: i the vicinity of Zx - 713 see

L, and :

Iig, 15h.
There are several options. The requircment is to incur a relative error of less than some
.- small number ¢ on any of the terms. Spalart & Leonard chose to use a varying number of
E » terms depending on the value of [Zx 7, /1 (more terms il it s sinall). If the cells are
neighbors the interactions are computed vortex-by-vortex, because the Taylor expansion

J
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V.
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Figure 15. Schematic of cell-to-cell iuteractions in the “lumping” methods
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fails (i.e., it is too close to its radius or convergence). One can optimize the number of
cells, and the best value is of order V}/?. T.ie overall cost, for a fixed value of ¢, is then
of order N*/2. Greengard & Rokhlin (1987} carry the idca further by nesting the cells.
There arc many levels of lumping. In essence they keep [ Zx - Zp]/l roughly constant,
instead of varying the number of terms. Spalart & Leouard wasted terims on the very-well
separated cells (large |2 - Z1,i/l). The nesting removes the need for computing many
vortex-by-vortex terms. On the other haad, one needs many more cells. Greengard &
Rokhlin’s arrive at an operation count of order N log*(¢).

Greengard & Rokhlin’s statemen: that the cost is of order N is not rigorously correct,
because € is not a constant (there is no reason why it should equal the precision of the
computer). For the method to converge, ¢ must tend to zero like some power of N as N
tends to oc. Thus the cost is really of order Nlog?(N). Similarly, Spalart & Leonard’s
N3/ estimate should be revised upwards, at leasy ta N¥/?log(N), because as ¢ — 0 one
needs to include more Taylor terms for a given separation. A factor log(N) is not very
important especially since larger values of N improve the throughput of the computer, but
one likes to be rigorous if possible.

In practice, Spalart & Leonard’s algorithin was helpful on serial computers (CDC 7600)
with € = 1072, but was hardly worth the effort on vector computers (Cray 15), because it
makes vectorization difficult and results in short loops. One probably needs thousands oi
vortices for the lumping to bring a significant improven:. nt (the gather-scatter capabilities
of the newest machines may make a difference). Greengard & Rokhlin report an impressive
advantage starting with a few hundred vortices and with ¢ =~ 107%, again on a serial
machine (a VAX 8600). The performance of their method on a vector machine will be
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‘ extremely interesting. The nested mcthod is very promising, and the fact the grid does

g not interfere with the body is a definite advantage over vortex-in-cell metheds. Also, empty
cells do not consume any work. The extension to 3D will require more work since we are
not just considering the function 1/z, but is possible.

Ackncwledgements
The author thanks Mr. K. Shariff and Mr. G. Coleman (NASA Ames Research Center

and Stanford University) for many valuable suggestions.




60 P. R. Spalart
SFERENCES
ANDERSON, C. 1985a “A vortex method for flows with slight density variations”.

J. Comp. Phys. 61, 417.

HNDERSON, C. 1985b “A method of local corrections for computing the velocity field due
to a distribution of vortex blobs”. J. Comp. Phys. 62, 111.

ANDERSON, (. & GREENGARD, (. 1985 “On vortex metheds”. SIAM J. Num. Anal.
22, 413.

AREF, H. 1983 “Integrable, chaotic, and turbulent vortex motion in two-dimensional
flows”. Ann. Kev. Fluid Mech. 23, 345.

AREF, H. & Siccia, E. D. 1980 “Vortex dynamics of the two-dimensional turbulent
shear layer”. J. Fluid Mech. 100, 4, 705.

AsHURST, W. T. 1979 “Numerical simulation of turbulent mixing layers via vortex dy-
namics”. Turbulent Shear Flows i; F. Durst, 3. . Launder, F. W. Schmidt and J. H.
Whitelaw editors. Springer-Verlag, Berlin, 1979.

£, SHURST, W. T. 1983 “Large-eddy simulation via vortex dynamics”. A. [. A. A.
83-1879-CP.

ASHURST, W. T. & MEIBURG, 1%, 1985 “Three-dimensional shear layers via vortex dy-
namics”. SANDIA Report 85-8777. Also to appear in J. Fluid Mech.

BATCHELOR, G. K. 1967 An introduction to fluid dynamics. Cambridge Univ. Press.
BEALE J. T. & MAJDA, A. 1982 “Vortex methods, I and II". Math. Comp. 39, 1.

BeaLE J. T. & MAIDA, A. 1985 “High-order accurate vortex methods with explicit
velocity kernels”. J. Comp. Phys. 58, 1¥8.

Birknorr, G. 1962 “Helmholtz and Taylor instability”. Proc. Symp. Appl. Math., Amer.
Math., Soc. XIII, 55.

CANTALOUBE, B. & HUBERSON, S. 1984 “A vortex point method for calculating inviscid
incompressible flows around rotary wings”. Rech. Aerosp. 1984-6, 19.

Ceskct, T, & BRapsHAw, P, 1977 Momentum transfer in boandary layers. McGraw-
Hill, New York.

CHEER, A. Y. 1983 “Numerical study of incompressible slightly viscous flow past blunt
bodies and airfoils”. SIAM J. Sci. Stat. Comyp. 4, 4, 685.

CHORIN, A. J. 1973 “Numerical study of slightly viscous flow”. J. Fluid Mech. 57, T85.

C('HORIN, A. J. 1978 “Vortex-sheet approaimation of boundary layers™. J. Comp. Phys.
27, 425,

C'HORIN, A. J. 1980 “Vortex models and boundary-layer instability”. SIAM J. Sci. Stat.
Comp. 1, 1, 1.

CHORIN, A. J. 1982 “The evolution of a turbulent vortex”. Commun. Math. Phys. 83,
ST,

CHORIN, A. J. & BERNARD, . S. 1973 “Discretization of a vortex sheet, with an example
of roll-up”. J. Comp. Phys. 13, 423.

‘v-’\,

s el i




4

Vortecr Methods 61

C'HRISTIANSEN, J. P. 1973 “Numerical simulation of hydrodynamics by the method or
point vortices”. J. Comp. Phys. 13, 363.

CoviET, B., BUNEMAN, O. & LEONARD, A. 1981 “Simulation of three-dimensional
incompressible flows wi  a vortex-in-cell method”. J. Comp. Phys. 39, 305.

DEFFENBAUGH, IF. 1", & MARSHALL, F. J. 1976 “Time development of the flow about
an impulsively started cylinder”. A, 1. A, A, J. 14, 908.

DEFFENBAUGH, F. D. & SHIVANANDA, 'T. P. 1980 “Discrete vortex wake modeiins of
separated flow phenomena”. TRW Report 33945 UT-00, Redondo Beach, Calif.

GHONIEM, A F. & GAGNON, Y. 1987 “Vortex simulation of laminar recirculating flow”.
J. Comp. Phys. 68, 346.

GoobyAaN, b 1987 “Convergence of the random vortex method”. Comm. Pure Appl.
Math.. XL, 1%9.

GREENGARD, (. AL 19581 “Three-diniensional vortex methods”. Ph. D. Thesis, Lawrence
Berkeley Lab. Rep. 18217,

.

GREENGARD, (. AL 1985 “The core-spreading vortex method approximates tie virong
equation”. J. Comp. Phys. 61, 345.

GREENGARD, (. A& THOMANN, K. 198K “Point vortices, vorions, and weak solutions
of the Buler equations”. submitted to Phys. Fluids.

GREENGARD. L. & Roknpin, V.o 1987 “A fast algorithm for particle simulations”.
J. Comp. Phys. 73, 325.

HALD, O. 1979 “The convergence of vortex methods, 11", STAM J. Num. Anal. 18, 726.

Haip, O. 1981 “Convergence of a random method with creation of vorticity™. Center for
Pure App. Math., PANM 252 UL (. Berkeley .

Hama, O RO 1962 “Progressive deformation of a perturbed line-vortex filament™. Phys.

Fluids. 6, 526.
Hasivoro, H. 1972 *A soliton on a vortex filament™. J. Flurd Mech, 51, 477,

Karz, J. 1981 "A discrete vortex method for the non-steady separated flow over an
airfoil™. J. Flhad Mcch. 102, 315,

NRASNY, R. 1986 A study of singunlarity formation in a vortex sheet by the point vortex
approximation”. J. Flutd Mech. 167, 65,

Lasui, Ho 1945 Hydrodynanties. Dover, New York.,

INvwanars, . & Taxkami, H. 1973 “Numerical studies of two-dimensional vortex
motion by a system of point vortices™. J. Phys. Soc. Juvan. 34, 247,

Lroxarn, AL 1980 “Vortex methods for flow simlation™. J. Comp. Phys. 37, 289,

LEONARD, AL 1985 *Computing three diox asional incompressible flows with vortex ele-
ments". Ann. Hevo Flud Meeh, YT, 523,

Lewts, R. LUK “Surface vortiaty medelling of separated Bows from two-dimensional
blull bodies of arbitraay shape™ J. Arech, Eng. Sei. 28,1, 1.

et i ety i s L

e o




't
)

62 P. R. Spalart

LIGHTHILL, M. J. 1963 “Boundary-layer theory”. in Laminar Boundary Layers, ed. by L.
Rosenhead. Oxford Univ. Press.

MARCHIORO, C. & PULVIRENTI, M. 1983 “Enuler evolution for singular initial data and
vortex theory”. Comm. Math. Phys. 91, 563.

MELANDER, M. V., ZABUsKY, N. J., & STYCZEK, A. S. 1986 “A moment model for
vortex interactions of the two-dimensional Euler equations. Part 1. Computational
validation of a Hamiitonian elliptical representation”. J. Fluid Mech. 167, 95.

MiLiNAzzo, F., & SAFFMAN, P. G. 1677 “The calculation of large-Reynolds-number

two-dimensional fow using discrete vortices with random walk”. J. Comp. Phys. 23,
380. See also 26, 453.

MooRE, D. W. 1979 “.\ numerical study of the roll-up of a finite vortex sheet”. J Fluid
Mech. 83, 225.

M0nSHER, . 1985 “A method for computing three-dimensional vortex flows”. Zeit. Flug-
wiss. Weltraumforsch. 9, 5, 125.

NAKAMURA. Y., LEONARD, A., & SPALART, P. R. 1982 “Vortex simulation of an
inviscid shear layer”. 4. I. 4. 4. 82-0944.

NAKAMURA, Y., LEONARD, A., & SPALART, 2. R. 1986 “internal structure of a vortex
breakdown”. A. I. A. A. R6-1374.

Novikov, E. A. 1983 “Generalized dynamics of three-dimensional vortical singularities
(vertons)”. Sov. Phys. JETP. 57, 5. 566.
PERLMAN, M. B. 1985 “On the accuracy of vortex methods”. J. Comp. Phys. 59, 200.

PRANDTL, L. & TEITIENS, O. G. 1934 Applied Hydro- and Aeromechanics. Dover, New
York.

REHBACH, C. 1977 “Calcal  mérique d’écoulements tridimensionnels instationnajres
avec nappes tourbillonaires”. Rech. Aérosp. 1977-5, 289. Also A. 1. A. A. 78-111.

ROBERTS, S. 1985 “Accuracy of the random vorte: method for a problem with nonsmooth
initial conditions”. J. Comp. Phys. 58, 29.

ROSENHEAD, L. 1931 “The formation of vortices from a surface of discontinuity”.
Roy. Soc. London. A 134, 170.

SAFFMAN, P. (. 1980 “Vortex interaciions and coherent structures in turbulence”, in
Transition and turbulence. R. E. Meyer editor. Academic, New York.

SAFFMAN, P. (. & Myiron, D. 1. 1986 “Difficulties with three-dimensional weak
solutions for inviseid incompressible flov”. Phys. Fluids. 29, 8, £373.

SPALART, . R. 1984 “Twao recent extensions of the vortex method”. A. 1. A. A. 84-0343.

SPALART, I’. R. 1935 “Simulation of rotating stall by the vortex method”. J. Propulsion
Power. 1, 3, 235 7

SraLART, P. R. & LEONARD, A. 1681 “Computation of separated flows by a vortex-
fracing algotithm™. A. 1. 4. 4. 81-12486.

SPaLART, P. R., LEONARD, A., & BAGANOFF, D. 1983 “Numerical simulation of sepa-
rated flows”. NASA T. M. 84325,




’:
.
5

-, N B AT W (o i+

Vorter Methods 63

SPEZIALE, (. G., SisTo, ¥F. & JONNAVITHU LA, 5. 1986 “Vortex simulation of propagat-
ing stall in a linear cascade of airfoils.”. J. Fluids fing. 108, 304.
STANSBY, P. K. & Dixon, A. (i, 1982 “The import

dimensional wake formation at very lugh Rey
105.

ance of secondary shedding in two-
nolds numbers”. Aero. Quart. 33, .

TENG, Z. H. 1982 “Elliptic-vortex method for incon

pressible flow at high Reynolds num-
ber”. J. Comp. Phys. 46, 54.

FING, L. 1983 “On the application of the integral invariants and
distributions”. J. Fluid Mech. 127, 447,

WINCKELMANS, G. & LEONARD, A. 1987 “Short wave-length dynamics of a vortex
filament™. Bull. Amer. Phys. Soc. 32, 10, 207s.

Wu, J. (", & SANKAR, N. 1. 1980 “Aerodynamic force and moment in steady and
time-dependent viscous flows™. 4. I. 4. 4. 80-0011.

ZABUSKY, N. J., HuGHES, M. H., & RoBERTS, K. V. 1979 “Contour dynamics for the
Euler equatiors in two dimensions”. J. Comp. Phys. 30, 96.

decay laws of vorticity




